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Abstract— Place recognition, i.e., the ability to recognize pre-
viously seen parts of the environment, is one of the fundamental
tasks in mobile robotics. The wide range of applications of
place recognition includes localization (determine the initial
pose), SLAM (detect loop closures), and change detection in
dynamic environments. In the past, only relatively little work
has been carried out to attack this problem using 3D range data
and the majority of approaches focuses on detecting similar
structures without estimating relative poses. In this paper, we
present an algorithm based on 3D range data that is able to
reliably detect previously seen parts of the environment and at
the same time calculates an accurate transformation between
the corresponding scan-pairs. Our system uses the estimated
transformation to evaluate a candidate and in this way to
more robustly reject false positives for place recognition. We
present an extensive set of experiments using publicly available
datasets in which we compare our system to other state-of-the-
art approaches.

Index Terms— Place recognition, SLAM, loop closing, point
clouds, range images, range sensing

I. I NTRODUCTION

Place recognition, meaning the detection that a robot
revisited an already known area, is a crucial part in key
navigation tasks including localization and SLAM. The ma-
jority of state-of-the-art place recognition techniques have
been developed for vision- or two dimensional range data.
Relatively few approaches work on three-dimensional laser
range scans and can efficiently calculate the similarity or the
relative transformation between two scans.

In this paper we present a place recognition system oper-
ating on 3D range data. Our approach transforms a given 3D
range scan into a range image and uses a combination of a
bag-of-words approach and a point-feature-based estimation
of relative poses that are then individually scored. Figure1
shows an example application. It visualizes how the calcu-
lated relative transformations between scans can be used as
edges (loop closures) in a pose graph. This enables us to
apply our approach as a front-end for a graph-based SLAM
system.

This paper builds on the results of our earlier work in
the area of place recognition [16]. This approach had high
recognition rates, but had shortcomings regarding the runtime
and was not fully invariant to the orientation of the individual
scans. Our algorithm described in this paper uses a novel
feature type, an improved sensor model, includes a self-
similarity analysis, and employs a bag-of-words approach
as a preprocessing step to achieve a higher performance.
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Fig. 1. Results from our place recognition system on the Hanover2
dataset. The image shows the graph of the trajectory (black nodes) and
the found loop closures between the scans (blue/gray lines). The z-axis of
the trajectory represents the scan index to make the loop closures more
easily visible. The image in the bottom right shows an aerial image from
Google Earth with the overlaid trajectory of the dataset. The experimental
section provides further details about the dataset and our results.

We tested our approach on different kinds of platforms:
ground robots and flying vehicles. For the ground robots,
we used publicly available datasets to allow comparison with
previous methods. For flying vehicles we acquired a new set
of 3D range scans. For the sake of repeatability, we will
make this data publicly available.

II. RELATED WORK

In the past, the problem of place recognition has been
addressed by several researchers and approaches for different
types of sensors have been developed. Cameras are often
the first choice. Compared to 3D data, vision features are
typically very descriptive and unique. However, spacial ver-
ification is naturally easier in 3D data. One very successful
approach using vision is the Feature Appearance Based
MAPping algorithm (FABMAP) proposed by Cummins and
Newman [7]. This algorithm uses a Bag-of-Words (BoW) ap-
proach based on SURFs [5] extracted from omni-directional
camera images and was shown to work reliably even on
extremely large-scale datasets. We would like to refer the
reader to this paper for a detailed discussion on both vision-
based place recognition and BoW approaches.

An approach that is similar to ours regarding the utiliza-
tion of point features to create candidate transformationsis
described in the PhD thesis of Huber [11]. His approach
extracts Spin Images [12] from 3D scans and uses them to
match each scan against a database. Huber reported 1.5 s as
the time requirement to match one scan against another. Even
considering the advances in computer hardware since 2002,



Fig. 2. Example range image from the FreiburgCampus3603D dataset.
The image pixel positions represent the spherical coordinates of the points.
The gray values represent the measured ranges. Blue points are maximum
range readings and green points are unknown space.

our approach is substantially faster.
Li and Olson [14] create visual images from LIDAR data,

which enables them to use feature extraction methods from
the vision sector to create a more universally usable point
feature extractor. This feature extraction method is usable
in 2D and 3D, although a 2D projection of the points is
performed in the 3D case. Therefore relative poses computed
from feature correspondences will also just be 2D.

Several approaches have been designed especially for 2D
range data. For, example, Bosse and Zlot [6] presented a loop
closure solution that builds local maps from consecutive 2D
scans for which they compute histogram-based features. The
correlation between these features is than used to match the
local maps against each other. Tipaldiet al. [18] perform
place recognition on 2D range scans using the so-called
FLIRT-features (Fast Laser Interest Region Transform). The
features are used to find correspondences between points in
the scans and transformations are extracted using RANSAC.
Granstr̈om et al. [8] proposed a machine learning approach
to detect loops in 2D range scans. They extract a combination
of rotation-invariant features from the scans and use a binary
classifier based on boosting to recognize previously visited
locations.

Recently, Granstr̈om et al. [9] extended their system to 3D
range scans. Their system only detects the existence of a loop
closure and does not determine the relative transformation
between scans. Magnussonet al. [15] also proposed a system
for place recognition based on 3D data. They utilize the
Normal Distribution Transform as features to match scans.
These features are global appearance descriptors, which
describe the whole 3D scan instead of just small areas as
it is the case for our features. While being very fast, their
system does also not estimate relative poses. In Section IV,
we will compare our algorithm to these two methods. The
results indicate that our approach yields substantially higher
recall rates.

III. T ECHNICAL SECTION

In our former work on place recognition [16] we used
point feature correspondences to find candidate transfor-
mations between scans and calculated scores for those
transformations. The main problem was that the runtime-
requirements for this approach were relatively high and that
it was not completely rotationally invariant. The algorithm
presented here is similar regarding the basic functionalities.
However, we introduced several improvements to make the
algorithm more efficient and also more robust. In the remain-
der of this section we will describe the different components
of our new algorithm in detail.

A. Overview

Given a database of 3D scans and a scan as input query,
our algorithm returns a set of scans which are potential
matches with the input. Additionally, it calculates for every
returned scan a transformation and a score reflecting how
certain the system is that the scans actually match.

More formally, let D denote the database of 3D range
measurements andz∗ a query scan. The goal of our ap-
proach is to calculate a set of candidate pairs,C(z∗) =
(〈z1, T1, s1〉, . . . , 〈zn, Tn, sn〉). Here,zi ∈ D, i ∈ {1, . . . , n}
are the potential measurement candidates from the database
which are similar to the current queryz∗. WhereasTi denotes
the estimated transformation fromz∗ to zi, si is a score
reflecting the confidence about the match. Our algorithm for
calculatingC(z∗) mainly consists of the following four steps.

1) Given a database of 3D range measurementsD′ (train-
ing set), calculate a set of features from the 3D scans
and build a dictionary for a bag-of-words (BoW)
approach.

2) Use the BoW approach to get an initial similarity
measure for all scans in the databaseD with respect
to the query scanz∗. Using this measure, order the
database scans according to their similarity. Let the
resulting ordered set bêD(z∗) = 〈ẑ1, . . . , ẑ|D|〉.

3) For each pair〈z∗, ẑk〉, ẑk ∈ D̂(z∗), starting with
k = 1, calculate a set of possible transformations
betweenz∗ and ẑk by matching point features of the
corresponding scans. Note that this set of features is
not the same as the one used for the BoW approach,
since the parameters for the feature extraction differ.

4) Score each of the possible transformations and get
the transformationTk with the highest scoresk.
If this score is above an acceptance threshold then
〈ẑk, Tk, sk〉 is a candidate for a recognized place, i.e.,
it is added toC(z∗).

The last two steps are repeated until a timeout occurs or
k = |D|. Note that if there are no time constraints, the first
two steps can be skipped so that all scans inD are checked.

Although we work with a database of 3D range scans, we
do not use this data directly. We rather represent each three-
dimensional range scan by its dual, namely a range image
(see Figure 2). If the 3D scan is captured from one point in
space, i.e., the sensor does not move while the 3D points are
generated, the range image contains the same information as
the scan. The advantage of the range image is that it allows us
to model unknown areas as well as maximum range readings
more efficiently.

We will now describe the individual components of our
approach in more detail.

B. Feature Extraction

Our approach applies the so-called NARFs (Normal-
Aligned Radial Features) [17] recently developed for robust
object recognition based on 3D scans. These point features
are used to build a dictionary for the bag of words approach
and also to find corresponding regions between two 3D



measurements. Compared to the approach presented in an
earlier work [16], NARFs provide more robust key points
and the feature descriptor is less prone to noise in the data.

There are three parameters needed for the extraction of
NARFs. First, the size of the feature descriptor, second the
maximum number of calculated features, and finally the
support size, which is the size of the area around the feature
point that is used to calculate the descriptor. We chose36
as the descriptor size. For the BoW approach a high number
of features describing small parts of the environment is most
useful. Therefore we extract2000 features with a support
size of1/10 of the average range in databaseD. However,
when matching a new queryz∗ againstD, a smaller number
of more distinctive features is needed. Here, we extract200
features with a support size of1/5 of the average range
in D. Intuitively, a small support size makes the features
susceptible to noise and less distinctive, whereas a large
support size makes them more expensive to compute and
less robust to partial occlusion and missing data. However,
we found the values above to provide reasonable trade-offs
between those properties.

The descriptors of the features can be compared using
standard norms like the Manhattan distance. The resulting
measure (thedescriptor distance) describes the similarity
between the described regions. Here, a high value reflects a
low similarity. Furthermore, NARFs can either be used in a
rotationally invariant version or without invariance regarding
the rotation around the normal. For example, in the rotation-
ally variant case the features distinguish between a top right
corner and a top left corner of a square, whereas they do not
in the rotationally invariant case. This is a useful distinction,
since wheeled robots capturing 3D scans often move with
very little change in their roll and pitch angle. Accordingly,
they do not need the rotational invariance around the normal
vector for the features. The same is the case if the robot is
equipped with an IMU. This can reduce the computational
complexity of the problem since the feature matching with
one degree of freedom less is more robust. A comparison
between the two modes can be found in Section IV-B.

C. Bag of Words

We use a BoW approach as a fast initial method to pre-
order the scans according to their similarity to the given
query scanz∗. BoW approaches are based on the idea
that similar structures in an environment will create similar
distributions of features. The goal is to obtain a general
representation for those feature distributions. We want to
encode each scan in terms of a small set of words (the
dictionary). To learn this set, we use a training databaseD′

of 3D scans and calculate2000 NARFs for each scan. For a
database of sizen, this leads ton · 2000 feature descriptors
(each of size36). We then apply k-means clustering to obtain
a total of 200 clusters. Our dictionary is now made of200
words, each being the averaged descriptor of its cluster. We
found that this size provides a reasonable trade-off between
being able to generalize and being descriptive enough. Given
this dictionary, we can now express each scanzi ∈ D in

terms of the words of the dictionary by selecting the closest
word for every feature descriptor (regarding the Euclidean
distance). For eachzi, we obtain a histogramHi having
200 bins. The number in each bin reflects how often the
corresponding word is present inzi. Given the histogram of
the query scanH∗ (obtained in the same way), we calculate
‖H∗ − Hi‖2 as the distance between the histograms. This
distance is then used as an initial similarity measure to create
the ordered set̂D(z∗), as described in Section III-A

In the next step we calculate a set of candidate transfor-
mations between the scan pairs.

D. Determining Candidate Transformations

Each NARF encodes a full 3D transformation. Therefore,
the knowledge about a single feature correspondence be-
tween two scans enables us to retrieve all six degrees of
freedom of the relative transformation between them (i.e.,
by calculating the difference between the two poses). To
obtain the candidate transformations for each scan pair, we
order the feature pairs according to increasing descriptor
distance (see Section III-B) and evaluate the transformations
in this order. In other words, we calculate a score for each
of these transformations (see Section III-E). In our experi-
ments we stop after a maximum number of2000 evaluated
transformations when using the rotationally variant version
of the NARFs. In the rotationally invariant case however, we
evaluate up to5000 transformations due to the bigger search
space introduced by the additional degree of freedom.

E. Scoring of Candidate Transformations

The result of the feature matching is a list of relative poses
T̂k = {T̂k1

, . . . , T̂kn
} for the candidate pair〈z∗, ẑk〉, ẑk ∈

D̂(z∗). Our goal now is to evaluate those candidate transfor-
mations and calculate a score (likelihood) for eachT̂ ∈ T̂k

reflecting the confidence of the transformation given a model
of our sensor. Recall that we use 3D range data, i.e., each
measurementz is a set of 3D points. This enables us to
evaluate the candidate transformationT̂ on a point-by-point
basis (i.e., we assume the points are mutually independent).

Let P be a set ofvalidation pointsfrom the query scan
z∗. This setP could contain all points fromz∗ but we will
only use a representative subset ofz∗ as described at the end
of this section. Given a candidate transformationT̂ ∈ T̂k, we
first transform eachp ∈ P in the reference frame ofz∗ into a
point p′ in the reference frame ofzk. Since we represent our
scans as range images, we can calculate the pixel position
p′(x, y) in the range image of̂zk in which the pointp′ would
fall into as well as the range valuer′ the point should have.
Let pk(x, y) ∈ ẑk be the point that is already at this pixel
position (in the range image of̂zk) having the range value
rk(x, y). For eachp ∈ P we will now calculate a score
s
T̂
(p) ∈ [0, 1] and a weightw

T̂
(p) > 0 reflecting how good

the predictionr′ is explained by the observationrk(x, y).
The point scores will then be used to calculate the overall
likelihood s(T̂ ) for the transformation̂T by:

s(T̂ ) =

∑
∀p∈P w

T̂
(p) · s

T̂
(p)

∑
∀p∈P w

T̂
(p)

. (1)



Let ∆r = rk(x, y) − r′ be the difference between the
observed and the predicted range. To evaluate∆r, we have
to consider the model of the sensor. In the case of a laser
scanner, a pulse of light moves from the sensor’s origin
along a line to the measured point (each range image pixel
represents one such beam). There are several different cases
needed to be considered regarding the interpretation of∆r:

1) The observation is within a confidence interval
∆rmax > 0 of the prediction, i.e.,|∆r| < ∆rmax. In
other words, what we expected to see mostly fits with
what we measured. In this case, we calculate the score
as s

T̂
(p) = 1 − |∆r|

∆rmax

and weight it byw
T̂
(p) = 1,

which represents a triangular distribution. While a
Gaussian would be a more realistic representation, we
chose a triangular distribution, since it is less expensive
to compute.
All the other cases will receive a scores

T̂
(p) = 0.

Thus, the associated weightw
T̂
(p) reflects the confi-

dence about howwrong the transformation̂T is.
2) The observed range is larger than the predicted one,

i.e., ∆r > ∆rmax. This means that we actually
observed something behindp′ and basically looked
through it. This could be the evidence for a dynamic
or partially transparent obstacle, but in general it is
a strong indicator for a wrong transformation. We
therefore penalize the overall likelihood by a high
weightwT (p) = wseeThrough≥ 1.

3) The observed range is smaller than the predicted range,
i.e., ∆r < −∆rmax. In this case, there are two more
situations to distinguish:

a) T̂−1 · pk(x, y) exists inz∗. This means that we
could not seep′ in ẑk because of an already
known obstacle. In this case we give a low weight
w

T̂
(p) = wknownObstacle≤ 1 in order to enable us to

receive relatively high scores even if the overlap
between scans is low.

b) T̂−1 · pk(x, y) does not exist inz∗. This could
be evidence for a formerly unseen or dynamic
obstacle, but in general it is a strong indicator
for a wrong transformation. Similar to case 2,
we penalize this by a high weightw

T̂
(p) =

wunknownObstacle≥ 1.

4) pk(x, y) is an unobserved point in the range image of
ẑk. This means thatp′ could not be observed because
it is outside of the scan. We treat this the same as 3a.

5) rk(x, y) is a far range reading (i.e., exceeding the max
range of the sensor) in the range image ofẑk. There
are two more situations to distinguish, for which we
need to consider the original ranger of p in z∗:

a) The point should actually be closer to the sensor
in ẑk, i.e., r′ ≤ r. In this case it is improbable
that p′ is out of range and therefore we treat this
the same as case 2.

b) The point moved further away from the sensor in
ẑk, i.e., r′ > r. In this case it is possible thatp
moved out of range and we give a medium high

weightw
T̂
(p) = wfarRange≥ 1.

To avoid that slight errors in the estimate of a correct
transformation lead to a very small score, e.g., if the point
lies on an obstacle border and we hit the much further away
neighbor instead, we actually consider not onlyp′(x, y) as a
correspondence forp′, but also its neighbors in a small pixel
radiuse ∈ N (3 in our experiments) around it and select the
point with the least negative influence on the complete score.

Until now we did not say, how the set of validation
pointsP , from which we selectp, is obtained. In principle
it could contain all the points fromz∗. However, this would
lead to a high number of points to be tested and thus would
be computationally expensive. We therefore use only a subset
of z∗. A random subset of a fixed size could be used, but it
is better to select points that have some significance in the
scene, or two scans could get a high score, just because
the floor or a big wall is well aligned. Furthermore, the
points should be evenly distributed over the scan in 3D
space to be invariant regarding the non-uniform resolution
of 3D scans. To achieve this, we use the set of key-pointsP̂
(i.e., the points where the NARF’s are) that we calculated in
the feature extraction process as a base to create the set of
validation points. We add a random point from̂P to P and
then iteratively add the point̂pi ∈ P̂ that has the highest 3D
distance to all points already inP , until a maximum size is
reached (200 points in our current implementation). This has
the interesting property that each ordered subset〈p0, · · · , pj〉
of the ordered setP = 〈p0, · · · , p|P |〉 is a subsampled version
of P̂ with mostly equidistant points for everyj. This also
means that one can stop the calculation ofs(T̂ ) (see Eq. 1)
before handling each point inP if the score is already to low
after a certain minimum of handled points (30 points in our
experiments), since this subset already represents the whole
set quite well.

Since the scores(T̂ ) for the transformation̂T is not neces-
sarily the same as for̂T−1 (by switching the role ofz∗ with
ẑk), we adapt the scoring tos′(T̂ ) = min(s(T̂ ), s(T̂−1)) as
the score for the pair〈z∗, ẑk〉 with transformationT̂ .

F. Self-Similarity

There are scans that qualify only poorly for the pose
estimation process because of a high self-similarity, e.g.,
corridors with very few distinctive structure. To prevent false
positives (false transformations getting a high score) in those
areas, we calculate a self-similarity score for every scan.
We do this by matching the scanz against itself, using the
procedure described above and consider only transformations
that are not close to the identity matrix. We call the highest
score in this setself (z) and consider it as a measure for
self similarity. We then adapt the scoring and obtain the
final score for a transformation betweenz∗ and ẑk in the
following way: s∗(T̂ ) = (1−(self (z∗)+self (ẑk))/2)·s

′(T̂ ).
Recall that we perform the steps described so far for each
candidate transformation̂T ∈ T̂k. If the best score out of
all candidates is above a threshold,ẑk represents a potential
loop closure, i.e.,C(z∗) := C(z∗) ∪ 〈ẑk, Tk, sk〉 with Tk =
argmax

T̂∈T̂k
s∗(T̂ ) andsk = s∗(Tk).



G. Implementation details

We perform some additional steps to improve the results.
After an initial scoring of the candidate transformations for
a scan pair〈z∗, ẑk〉 we first remove transformations with
a very low score. We then cluster the transformations and
identify those describing very similar relative poses, keeping
only the best ones in the candidate list. Next, we perform ICP
to improve the transformation estimate, using only the set of
validation points to speed up this step. Finally, we update
the scores given the corrected transformations and return the
transformation associated with the highest score as the result.

IV. EXPERIMENTS

In this section, we present the real-world experiments
carried out to evaluate our approach. We used four publicly
available datasets of 3D scans, namely two outdoor datasets
and two indoor dataset. In the following we will give an
overview over these datasets and their specific challenges.

A. Datasets

The following datasets were used in our experiments:

• For the first indoor dataset we choseAASS-loop1 [1].
This dataset was also used in the related work [8], [15],
which makes a comparison easier. Its main challenge is
that it contains some highly ambiguous areas in long
corridors.

• For the second indoor dataset we captured 3D scans
with a flying Quadrotor robot, equipped with a 2D
laser scanner [10]. This dataset [4] is challenging be-
cause of a higher noise level and the existence of
highly similar scans from different poses in a corridor
environment.

• For the first outdoor dataset we choseFreiburgCam-
pus3603D [2]. We already used this dataset in our
prior work on place recognition [16]. It contains high
resolution,360◦ scans and its main challenge is the
large distance between consecutive scans, stressing the
system’s ability for translational invariance.

• For the second outdoor dataset we choseHanover22 [3].
This dataset was also used in previous work [8], [15],
[16], which makes a comparison easier. This is a chal-
lenging dataset, since it contains a high number of very
sparse scans and the robot traverses different areas with
very similar structure.

All datasets apart from the Quadrotor dataset were recorded
with 2D laser scanners mounted on pan/tilt units. We ac-
quired SLAM trajectories using the provided odometry and
manually verified scan matching as edges in the graph SLAM
systemg2o [13]. These trajectories were used to evaluate
false/true positives and false/true negatives in our system. In
the Quadrotor dataset the helicopter occasionally captured
a 3D scan by flying downwards and upwards again while
hovering around the same spot. Here, the trajectory was es-
timated using the quadrotor’s navigation system as described

1Courtesy of Martin Magnusson, AASS,Örebro University, Sweden
2Courtesy of Oliver Wulf, Leibniz University, Germany

in [10]. Please refer to Figure 3 for more information about
the datasets.

In all experiments we usedwseeThrough= 25, wknownObstacle= 0.5,
wunknownObstacle= 15, andwfarRange = 5 as the parameters for the
scoring function (as defined in Section III-E).

B. Confusion Matrices

We calculated the confusion matrices for the datasets
(see Figure 4(a)) by matching each scan with every scan
in the database and returning the score of the best found
transformation. The dark areas that are not close to the main
diagonal mark loop closures. Here the system was able to
match scans from different points in time where the robot
visited a previously visited area (see also Figure 3).

To evaluate if a match is a false positive, we compared
the ground truth transformation between the scans with our
found transformation and check if it exceeds an error value.
Please note that this is a harder condition than used in related
work [15], [9], where no relative pose is estimated and only
the distance between the scans is considered.

Figure 4(b) gives an overview over the number of true
positives and false negatives and the resulting recall rateas
a function of the distance between scans, using the minimum
acceptance threshold for which no false positive was found.

Figure 4(c) plots the number of false positives as a func-
tion of the acceptance threshold. The recall rate for a man-
ually set maximum distance between scans is also shown.

For AASS-loop we used1.0m as the distance to consider
two scans a match (this is the same as in previous work [15],
[9]). The minimum acceptance threshold for which we re-
ceived no false positive is0.09. Above this value we have a
recall rate of0.938. The equivalent values for the Quadrotor
dataset are2.0m / 0.25 / 0.75, for FreiburgCampus3603D
10.0m / 0.05 / 0.958, and for Hanover23.0m / 0.19 / 0.925
respectively.

Our evaluations do not include the diagonal elements of
the confusion matrices (where the scans are matched against
themselves). Since Granström and Scḧon [9] used a machine
learning algorithm based on boosting they had to split their
dataset into learning and test sets for the cross validationand
therefore did not evaluate the complete confusion matrix at
once. They reported rates of0.53± 0.14 (min 0, max 0.88)
for the AASS-loop dataset and0.63 ± 0.6 (min 0.28, max
0.76) for the Hanover2 dataset.

Magnussonet al. [15] evaluated their system in a SLAM
scenario, where only scans that are at least 30 scans apart
are evaluated. In this scenario they got0.7 as the recall
rate for AASS and0.47 for Hanover2, respectively at 100%
precision. With the same setting we got1 (0.08 acceptance
threshold) for AASS and0.911 (0.19 acceptance threshold)
for Hanover2.

C. Timings and Influence of the BoW approach

The values given so far are the results we receive, when
we do not restrict the time requirements of our system.

For the AASS-loop dataset it takes us881ms to extract
interest points, features and validation points per scan and
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AASS yes 60 80873 n/a 0.7◦ 111.4 m 1.89 m 2.81 m 67.1 m
Quadrotor no 23 171608 95515 1.0◦ 79.1 m 3.6 m 1.9 m 6.1 m
Freiburg yes 77 155562 56451 0.45◦ 723 m 9.51 m 8.9 m 50 m
Hanover no 923 12959 3622 1.3◦ 1247.8 m 1.35 m 7.18 m 29 m

Fig. 3. Top: SLAM trajectories and ground truth confusion matrices for the used datasets. For the indoor datasets the trajectory is plotted on a 2D
projected laser map and for the outdoor datasets it is overlaid on a Google Earth aerial image. The gray values in the confusion matrices represent the
amount of overlap between the scans given the true relative pose.Bottom: Overview over the properties of the used datasets:stop&go=scans captured in
stop and go fashion,#scans=number of scans,#points=average number of points per scan,#farRanges=average number of far range readings per scan,
res=usable angular resolution for range images,traj =trajectory length,dist=average distance between consecutive scans,µ−range=average measured range
value,maxRange=maximum range value

585ms to match a scan against the database, meaning10ms
for each scan pair. The equivalent values for the Quadrotor
dataset are305ms, 102ms, and4ms, for the FreiburgCam-
pus3603D dataset1107ms, 838ms, and11ms, and for the
Hanover2 dataset316ms,4132ms, and4ms respectively. All
experiments were performed using an Intel I7 quad-core PC.

When using the BoW approach, there is an additional
overhead for the creation of the histograms (including feature
extraction), which is894ms for AASS-loop, 276ms for
Quadrotor,730ms for FreiburgCampus360360, and246ms
for Hanover2.

Using the BoW pre-ordering of the potential correspond-
ing scans, we can define a timeout for the database query.
Please refer to Figure 4(d) for an overview, how the re-
call rates (for the respective minimum acceptance threshold
and maximum scan distance) evolve for increasing timeout
values. It can be seen that the additional overhead for
the histogram calculation is only justifiable for the biggest
dataset, namely Hanover2. Here, a recall rate of close to
80% can already be reached after one second per database
query. In the same plots there is also a comparison between
the rotationally invariant and non-invariant version of the
NARFs. It can be seen that the additional degree of freedom
introduced by the rotational invariance increases the typical
runtime to achieve a certain recall rate and that the maximum
achievable recall rate is lowered. But overall, the recall rates
are still above the values of the other state-of-the-art systems
in the related work.

Please note that we used the Freiburg dataset to learn the
dictionary for the BoW approach. Therefore this result (see
Figure 4(d)) might be overconfident.

V. CONCLUSIONS

In this paper we presented a robust approach to 3D place
recognition that simultaneously computes relative pose esti-
mates between the involved 3D range scans. Our approach
is computationally more efficient compared to our previous
work while still receiving recall rates that compare favorably
to alternative approaches. Additionally, the applicationof the
recently developed normal-aligned radial features enabled us
to overcome the limitations regarding rotational invariance
of our former approach. We also presented a novel sensor
model. A carefully carried out evaluation revealed that our
new approach yields a more robust scoring of relative pose
estimates.
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Fig. 4. First row : Results AASS-loopSecond rowResults QuadrotorThird row : Results FreiburgCampus3603D Fourth row : Results Hanover2
(a): Confusion matrices created by our system.(b): The number of true positives, false negatives, and the resulting recall rate for different maximum
distances between scans to consider them overlapping. Respectively for the minimum acceptance threshold that did not return any false positives.(c):
Number of false positives and the recall rate for different minimum scores. The recall rate is determined regarding a maximum distance of1.0m / 2.0m
/ 10.0m / 3.0m (from top to bottom) between the scans.(d): The recall rate dependent on the maximum time the system has to match a scan against the
database, using the BoW approach. The two graphs represent the recall rate with and without the rotational invariance inthe NARFs.
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