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Zusammenfassung

Die technische Unterstützung für Ersthelfer, die einen gefährlichen Bereich erkunden müssen
um Verletzte zu finden und zu retten, während sie selbst lebensgefährliche Bereiche vermeiden
sollen, ist jüngst immer mehr in den Fokus der Forschung gerückt.

Eine Möglichkeit, Ersthelfer bei ihrer Arbeit zu unterstützen, besteht darin, Roboter einzuset-
zen um für den Menschen lebensgefährliche Bereiche zu entdecken oder Verletzte zu orten.
In diesem Zusammenhang werden fliegende Roboter eine Schlüsselrolle spielen, da sie dank
ihrer Bewegungsfreiheit über Hindernisse hinwegfliegen können, die radbasierten Robotern den
Weg versperren würden. Damit sie innerhalb von Gebäuden eingesetzt werden können, müssen
fliegende Roboter in der Lage sein, stationär zu verweilen. All diese Voraussetzungen werden
von Quadrotoren erfüllt. Leider ist es sehr zeit- und kostenintensiv, einem Menschen das Ferns-
teuern solcher Quadrotoren beizubringen. Zudem besteht während des Fernsteuerns immer ein
großes Risiko den Roboter zu beschädigen, da innerhalb von Gebäuden meist nur wenig Platz
zum Maneuvrieren ist und die Beschaffenheit der Umgebung einen schwerwiegenden Einfluss
auf die Funkverbindung haben kann. Daher muss der fliegende Roboter in der Lage sein über
einen längeren Zeitraum selbstständig zu operieren. In diesem Fall ist nur eine minimale In-
teraktion mit einem Menschen notwendig (z.B. die Eingabe desnächsten Wegpunktes den der
Roboter selbstständig anfliegen soll).

Eine weitere Möglichkeit, Ersthelfer technisch zu unterstützen, besteht darin, Sensoren in deren
Arbeitskleidung zu integrieren. Solche Sensoren können lebenswichtige Informationen über
den Bereich liefern, in dem sich der Träger gerade aufhält. ImZusammenhang mit Ersthelfern
die in einem für sie unbekannten Gebäude operieren, können diese Informationen dazu verwen-
dent werden, den Menschen im Notfall zum nächsten Ausgang zuleiten, insbesondere dann,
wenn der Mensch beispielsweise durch Rauch oder Feuer orientierungslos ist. Weiterhin kön-
nen solche Informationen verwendet werden, um die Einsatzteams besser zu koordinieren, in-
dem beispielsweise verhindert wird, dass ein und der selbe Bereich mehrmals abgesucht wird.

Die technischen Systeme die wir bisher beschrieben haben (konkret: Sensoren, die auf einem
Quadrotor montiert oder in die Arbeitskleidung integriertsind), müssen ihren aktuellen Zus-
tand, unter anderem ihre Position im Raum, kennen. Um die eigene Position innerhalb eines
Gebäudes bestimmen zu können ist im Allgemeinen eine Karte des Gebäudes nötig. Leider ist
in den meisten Fällen im Voraus keine Karte des Gebäudes vorhanden und das System muss
während des Einsatzes selbstständig eine Karte der Umgebung erstellen. Aufgrund der begren-
zten verfügbaren Rechenleistung sind effiziente Kartierungsverfahren notwendig.

In dieser Arbeit entwickeln wir neue Technologien für effizientes Kartieren welche mit einer
Reihe von verschiedenen Sensoren verwendet werden können. Weiterhin entwickeln wir ein
Navigationssystem, welches einem kleinen fliegenden Roboter (Quadrotor) völlig autonomes



Fliegen ermöglicht. Zuletzt entwickeln wir ein Verfahren,um aus menschlichen Bewegungen
Karten von Gebäuden zu erstellen. Hierbei trägt der Mensch einen Datenanzug, welcher aus
einer Menge von Inertialsensoren besteht.

Im ersten Teil dieser Arbeit stellen wir neue Ansätze vor um die Trajektorie eines Roboters
basierend auf seinen Messungen zu schätzen. Wir werden zeigen, dass unsere entwickelten
Verfahren genaue Resultate liefern, jedoch zum Teil um mehrere Größenordnungen schneller
arbeiten als alternative zeitgemäße Verfahren. Dies ermöglicht es einem (robotischen) Sen-
sorsystem die eigene Trajektorie auf effiziente Weise zu rekonstruieren, was ihnen wiederum
erlaubt, genaue Karten der Umgebung zu erstellen. Die in diesem Teil entwickelten Verfahren
werden anschließend im zweiten Teil der Arbeit in den entsprechenden Navigationssystemen
eingesetzt.

Im zweiten Teil der Arbeit entwickeln wir zwei Navigationssysteme für verschiedene Sen-
sorkombinationen. Das erste System ermöglicht es einem kleinen Quadrotor, völlig selbst-
ständig in Gebäuden zu fliegen. Zu den hier entwickelten Modulen gehören Positionskontrolle,
Lokalisierung, Kartierung, Pfadplanung und Hindernisvermeidung. Außerdem präsentieren wir
unser System, das dem Quadrotor erlaubt, Hindernisse untersich zu kartieren. Das zweite Nav-
igationssystem verwendet Daten von menschlichen Bewegungen, die mit einem Datenanzug,
bestehend aus mehreren Inertialsensoren, aufgezeichnet wurden. Wir entwickeln ein Verfahren
welches zuverlässig und genau die Trajektorie des Menschender den Anzug trägt, rekonstruiert
und sowohl eine geometrische als auch eine topologische Karte der Umgebung aufbaut. Das
Verfahren verwendet hierzu nur menschliche Bewegungen und daraus erkannte Aktivitäten. Der
Träger des Anzugs muss daher keine zusätzlichen Sensoren, wie Kameras oder Laser Scan-
ner, tragen. Insbesondere würden letztere in Bereichen mit starker Rauchentwicklung oder mit
Feuer, nicht zuverlässig funktionieren.

Obwohl wir unsere Arbeit für den Einsatzbereich von Ersthelfern motiviert haben, können un-
sere entwickelten Verfahren für eine große Anzahl von verschiedenen Anwendungen verwendet
werden und sind nicht auf das oben genannte Einsatzgebiet beschränkt.



Abstract

Technical support for first responders, who have to explore hazardous environments to locate
and rescue victims and thereby avoiding dangerous areas, has recently gained a substantial in-
terest in the research community.

One possibility to assist first responders is by using robotsto explore the environment and detect
dangerous areas or locate victims. Flying robots are envisioned to play a key role in this context
as their increased mobility allows them to fly over obstacleswhere wheeled robots get stuck. In
order to be able to operate indoors, the flying robot should beable to keep a stationary pose. All
these prerequisites are met by quadrotors. Unfortunately,teaching human personnel to remotely
steer such a flying platform is time intensive and costly. Additionally, manual piloting bears the
risk of damaging the robot due to the confined space indoors and due to environmental condi-
tions that can have a severe impact on the quality of the radiolink. The flying robot therefore
needs to be able to operate autonomously over an extended period of time. In this case, only
minimal input from a human (e.g., the next location the robotshould fly to) is required.

Another possibility to support first responders is by using sensor systems that are integrated
into their garment. Such sensors can provide vital information about the current location of the
wearer or an approximate map of the environment. In the context of first responders operating
in an unknown building, this information could be used to re-route the wearer to the nearest exit
in case of emergency, especially if environmental conditions like smoke and fire elicit confusion
among first responders. Even more, this kind of information can be employed in a search and
rescue mission by improving the delegation of different teams, i.e., by avoiding searching the
same area multiple times.

However, systems like the ones described so far (i.e., sensor systems mounted on a quadrotor or
integrated into the garment) need to be aware of their current state, including their own location.
To estimate the location indoors, a map of the environment isneeded in most cases. In general,
this map is not known beforehand and the (robotic) system needs to build a map of the envi-
ronment based on its sensor measurement during the mission.Due to the limited computational
power available, efficient mapping techniques are mandatory.

In this thesis we develop novel technologies for efficient mapping that can be used with a va-
riety of sensors. We furthermore develop a navigation system that enables a small-sized flying
robot (quadrotor) to fly autonomously indoors. Finally, we develop an approach to map indoor
environments based on human motion recorded with a data suit, i.e., an embedded sensor sys-
tem consisting of several inertial measurement units worn by the human.

In the first part of this thesis, we present an innovative technique for estimating the trajectory of
a robot, given its observations. We will demonstrate that compared to other state-of-the-art ap-



proaches our approach is up to several orders of magnitude faster without any loss in accuracy.
This allows embedded systems to efficiently and accurately recover their trajectory and thus al-
lows them to build accurate maps of the environment. This general framework is subsequently
used in the second part of the thesis in the corresponding embedded sensor systems.

In the second part, we develop two navigation systems for different types of sensor setups. The
first navigation system enables a small-sized quadrotor to fly autonomously indoors. This in-
cludes pose control, localization, map building, path-planning, and obstacle avoidance. We also
present a novel technique to map obstacles underneath the robot. The second system employs
information recorded with a data suit consisting of severalinertial measurement units worn by a
human. We develop a solution to recover the trajectory of thehuman and to build a geometrical
as well as topological map of the environment. In all cases, we solely employ the motions and
detected activities of the human. The wearer, therefore, does not need to carry any additional
sensors like cameras or laser scanners that would also not work reliably in the case of environ-
mental conditions like smoke and fire.

Above, we motivated our work in particular envisioned for first responders. However, it is
important to note that the developed technologies can be applied to a variety of scenarios and
are not restricted to the field of search and rescue.
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Chapter 1

Introduction

First responders, (i.e., fire fighters, police men, or human personnel from a technical relief
agency) in a search and rescue mission, are envisioned to become one of the key applications
of mobile robotics and embedded sensor systems. There exists several possibilities of techni-
cal support for first responders, who have to explore a dangerous environment (e.g., a burning
house) to locate and rescue victims while in the meantime avoiding hazardous areas.

One possibility to support first responders is by using flyingrobots that are equipped with sev-
eral sensors and can operate over an extended period of time.Within the context of search and
rescue missions, these robots should be able to operate indoors. Another possibility of support
are sensor systems that are embedded into the garment and therefore physically connected to
the human. These systems could highly improve the quality ofthe daily work. Even more, they
could protect humans by providing additional information about the environment or proposing
the human a path by avoiding potential hazards in unknown environments.

The goal of this thesis is to provide novel approaches that will aid humans, for example first
responders, in their daily work. We present two embedded robotic sensor systems. A fully
autonomous indoor quadrotor (i.e., a flying robot, see Figure 1.1) and a system to map indoor
environments based on human motion obtained from a data suit(see Figure 1.2).

Developing a navigation system that enables a quadrotor to fly autonomously in indoor environ-
ments is highly challenging. The reason is its limited payload, the high dynamics of this flying
platform and the confined space around the robot. These factors impose special requirements
on robustness, computational complexity, and accuracy forthe underlying navigation system.
Similar requirements are also present in the case of a sensorsystem physically connected to the
human. A system that is envisioned to improve the quality of human personnel or even help
saving human lives needs to be highly accurate. Since this system is worn by a human, the lim-
ited payload prevents the usage of heavy sensors. Even more,in context of search and rescue,
many sensors (e.g., cameras or lasers) will not work (reliably) in the presence of environmental
conditions like smoke or fog. We therefore use for this scenario inertial measurement units only.

However, both systems need an accurate estimate of their current state. Indeed, state estimation
is said to be one of the most important prerequisites for a truly autonomous system. In the work
presented here, the state also contains the current pose of the agent (i.e., robot or human) in
the environment. Since the agent has in general no information about the environment before-
hand, the system is required to construct a map of the surroundings during the mission. This
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Figure 1.1: One goal of this thesis: a navigation system enabling fully autonomous indoor flights using a small-
sized quadrotor robot. The image on the left shows a snapshotof the internal state of our navigation system.
Here, the quadrotor is flying autonomously in a cluttered office room. The free space around the robot is seriously
confined, imposing high demands on pose stability, state estimation, and control. The image in the bottom left
shows the office room from a similar view point as the snapshot. Our quadrotor is shown on the right.

Figure 1.2: One goal of this thesis: a framework for mapping indoor environments based on human motion and
activity detected given data from a data suit. The left imageshows the user wearing the data suit. The middle
image depicts the outcome of our approach. Based on the detection and tracking of doors and stairs we can
estimate the most likely trajectory of the subject. Moreover, we can estimate a geometrical and topological map of
the environment (middle image). Our estimated floor plan accurately resembles the floor plan of the same building
(right image). Note that we used three different colors in total for the topological representation of the environment
for better readability.

problem is known as simultaneous localization and mapping (SLAM) and has been in focus
of research during the past decades. In our work, we focus on estimating the full trajectory
of the agent given all observations, i.e., calculating a solution to the full SLAM problem. In
this case, we address the problem by dividing the SLAM approach into two parts, namely the
front-end SLAM and the back-end SLAM. The front-end is application dependent and aims to
calculate the incremental trajectory of the agent. It is furthermore responsible for recognizing
previously encountered parts of the environment (also known asloop closures). This type of
information can then be used by a back-end SLAM system to estimate the most likely trajectory
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Figure 1.3: One goal of this thesis: a general framework for graph-basedoptimization. Given a graph consisting of
nodes (i.e., robot poses) and edges (i.e., robot observations) the goal is to estimate a configuration of the nodes that
minimizes the overall error in the system and accurately recovers the trajectory of the robot. In the example shown
above, the robot was moving on a sphere. The left image depicts the trajectory of the robot given it’s measured
incremental motions only. The right image shows the result using our approach where the estimated trajectory
accurately resembles the true trajectory taken by robot.

of the agent (given all sensor measurements). In this thesis, we model the agent’s trajectory as
a graph consisting of nodes and edges. Nodes in the graph represent agent positions in distinct
time steps, whereas edges between two nodes encode an observation made about the corre-
sponding locations. Again, these observations could be incremental motion estimates as well
as a detected loop closures. Due to noisy measurements as well as the accumulation of errors
over time, there exist in general different sensor readingsabout the same location that do not
match the current configuration. We therefore need a technique able to estimate a configuration
of the nodes that maximizes the overall observation likelihood encoded by the edges. This is
also known as graph-based optimization. It is important to note that the abstract representation
(i.e., nodes and edges) allows us to decouple the back-end system from the overall application.

The back-end system of SLAM, however, is a computationally intensive part. Therefore, a goal
of this thesis is to develop a robust and efficient graph optimization technique which can be
used for environment modeling (see Figure 1.3). This in turnwill allow an agent to estimate it’s
current state. In this thesis, we will use this developed frame-work as the back-end for both the
navigation system of the flying robot and the SLAM system for mapping indoor environments
based on human motion.

1.1 Contributions

With this work, we contribute to the field of robotics research in several ways. We develop a
fast and accurate graph-optimization framework, that is one of the essential parts of a mapping
system. We adapt and extend algorithms developed for wheeled robots to flying ones. These
newly developed techniques allow for fully autonomous flights in indoor environments using
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a quadrotor. We present a mapping system that is able to accurately and robustly recover the
geometric structure of buildings and the subject’s trajectory given his movements and detected
activities only. In summary, we propose:

• a general framework to graph-based network optimization in2D and 3D (Chapter 4)

• a navigation system for autonomous indoor flying using a quadrotor robot (Chapter 5)

• an approach to map indoor environments based on human motionand activity (Chapter 6)

1.2 Contributions to Open-Source Software

Parts of our software have been released as open-source. Publishing software as open-source
allows other researchers to build upon our results, evaluate our approaches on different data and
platforms as well as verify our results. In more detail, we published:

• TORO1. This framework implements our tree network optimization algorithm. It has been
published under the Creative Commons license (Attribution-NonCommercial-ShareAlike).
Furthermore we provided several data sets that have been used for evaluating our ap-
proach. This framework was developed in collaboration withGiorgio Grisetti, Cyrill
Stachniss, and Wolfram Burgard.

• The Quadrotor Navigation System2 provides several software modules for autonomous
indoor navigation using a quadrotor flying robot and has beenpublished under the Cre-
ative Commons license (Attribution-NonCommercial-ShareAlike). Due to it’s modular
design, most parts of this software can also be used for different platforms like wheeled
robots. This framework was developed in collaboration withGiorgio Grisetti and Wol-
fram Burgard.

1.3 Publications

This thesis is based on the work published in international journals and conference proceedings.
The following list of publications is given in chronological order.

Journal Articles

• S. Grzonka, A. Karwath, F. Dijoux, and W. Burgard. Activity-based Estimation of Human
Trajectories. InIEEE Transactions on Robotics (T-RO), 28(1):234–245, 2012.

• S. Grzonka, G. Grisetti, and W. Burgard. A Fully Autonomous Indoor Quadrotor. In
IEEE Transactions on Robotics (T-RO), 28(1):90–100, 2012.

• S. Bouabdallah, C. Bermes, S. Grzonka, C. Gimkiewicz, A. Brenzikofer, R. Hahn, D.
Schafroth, G. Grisetti, W. Burgard, and R. Siegwart. Towards Palm-Size Autonomous
Helicopters. InJournal of Intelligent & Robotic Systems (IRS), 61:1–27, 2011.

1http://www.openslam.org/toro
2http://www.openquadrotor.org
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Conferences and Workshops

• B. Steder, M. Ruhnke, S. Grzonka, and W. Burgard. Place Recognition in 3D Scans
Using a Combination of Bag of Words and Point Feature based Relative Pose Estimation.
In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2011.

• S. Grzonka, B. Steder, and W. Burgard. 3D Place Recognition and Object Detection using
a Small-sized Quadrotor. InWorkshop on 3D Exploration, Mapping, and Surveillance
with Aerial Robots at Robotics: Science and Systems (RSS), 2011.

• S. Grzonka, F. Dijoux, A. Karwath, and W. Burgard. Learning Maps of Indoor Environ-
ments Based on Human Activity. InSpring Symposium Series of the Association for the
Advancement of Artificial Intelligence (AAAI), 2010.

• S. Bouabdallah, C. Bermes, S. Grzonka, C. Gimkiewicz, A. Brenzikofer, R. Hahn, D.
Schafroth, G. Grisetti, W. Burgard, and R. Siegwart. Towards Palm-Size Autonomous He-
licopters. InProc. of the International Conference and Exhibition on Unmanned Aerial
Vehicles (UAV), 2010.Best conference paper award.

• S. Grzonka, F. Dijoux, A. Karwath, and W. Burgard. Mapping Indoor Environments
Based on Human Activity. InProc. of the IEEE International Conference on Robotics
and Automation (ICRA), 2010.Finalist best student paper award. Finalist best paper
award in cognitive robotics.

• S. Grzonka, G. Grisetti, and W. Burgard. Towards a NavigationSystem for Autonomous
Indoor Flying. InProc. of the IEEE International Conference on Robotics and Automa-
tion (ICRA), 2009.Best conference paper award.

• S. Grzonka, G. Grisetti, and W. Burgard. Autonomous Indoors Navigation using a Small-
Size Quadrotor. InWorkshop Proc. of the International Conference on Simulation, Mod-
eling and Programming for Autonomous Robots (SIMPAR), 2008.

• S. Grzonka, S. Bouabdallah, G. Grisetti, W. Burgard, and R. Siegwart. Towards a Fully
Autonomous Indoor Helicopter. InWorkshop of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2008.

• B. Steder, G. Grisetti, S. Grzonka, C. Stachniss, and W. Burgard. Estimating Consistent
Elevation Maps using Down-Looking Cameras and Inertial Sensors. In Proc. of the
Workshop on Robotic Perception at the International Conference on Computer Vision
Theory and Applications, 2008.

• G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgard. Efficient Estimation
of Accurate Maximum Likelihood Maps in 3D. InProc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2007.

• B. Steder, G. Grisetti, C. Stachniss, S. Grzonka, A. Rottmann, and W. Burgard. Learn-
ing Maps in 3D using Attitude and Noisy Vision Sensors. InProc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems(IROS), 2007.



6 Chapter 1. Introduction

Outside the scope of this thesis fall the following publications

• S. Grzonka, C. Plagemann, G. Grisetti, and W. Burgard. Look-ahead Proposals for Robust
Grid-based SLAM with Rao-Blackwellized Particle Filters. InInternational Journal of
Robotics Research (IJRR), 02:191–200, 2009.

• K. Arras, S. Grzonka, M. Luber, and W. Burgard. Efficient People Tracking in Laser
Range Data using a Multi-Hypothesis Leg-Tracker with Adaptive Occlusion Probabili-
ties. In Proc. of IEEE International Conference on Robotics and Automation (ICRA),
2008.

• S. Grzonka, C. Plagemann, G. Grisetti, and W. Burgard. Look-ahead Proposals for Ro-
bust Grid-based SLAM. InProc. of the International Conference on Field and Service
Robotics (FSR), 2007.

• K.O. Arras, B. Lau, S. Grzonka, M. Luber, O. Martinez Mozos, D.Meyer-Delius, and
W. Burgard. Range-Based People Detection and Tracking for Socially Aware Service
Robots. InTowards Service Robots for Everyday Environments. Springer STAR series,
2012.

1.4 Collaborations

Parts of this thesis are the results of collaborations with other people and we would like to thank
all the people who put hard work in the joint projects. Especially, our tree network optimization
algorithm (Chapter 4) was developed in joint work with Giorgio Grisetti and Cyrill Stachniss.
Learning indoor maps based on human activity (Chapter 6) was originally addressed in the
co-supervised master thesis of Frederic Dijoux and extended in collaboration with Andreas
Karwath.

1.5 Outline

This thesis is structured as follows. We first review some basic mathematical concepts needed
for this work in Chapter 2, in particular the notation of motion composition and quaternions.
Subsequently, we present our developed techniques in the next chapters.

As already mentioned in the introduction, both the navigation system for the flying robot as
well as the SLAM system for mapping indoor environments based on human motion rely on
our graph-based optimization. This graph-based optimization is the back-end of the correspond-
ing SLAM system. We therefore first describe our developed tree-based network optimizer in
Part I: Graph-Based Optimization for Efficient Mapping. We start by discussing the basics
of optimization through error minimization in general and present the path-parametrized opti-
mization (PPO) algorithm for two-dimensional robotic mapping (Chapter 3). We then develop
a variant of PPO by introducing a novel parametrization of the nodes, extend our approach to
three-dimensional error minimization in Chapter 4, and showthat our approach yields accurate
results up to several orders of magnitude faster than other state-of-the-art approaches.

We furthermore develop two navigation systems for embeddedsensor systems inPart II: State
Estimation, Navigation, and Mapping for Embedded Sensor Systemswhere our graph-based
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optimization algorithm is used as the back-end SLAM system for efficient environment model-
ing. First, we present our developed techniques enabling fully autonomous indoor flights using
a small-sized quadrotor in Chapter 5. This technologies include position control, multilevel
SLAM, path-planning, and obstacle avoidance. Subsequently, we present a solution to map in-
door environments based on human motion and detected activity in Chapter 6. We demonstrate
that our proposed method is able to robustly and accurately recover the trajectory taken by a sub-
ject. Furthermore, we demonstrate that we are able to build approximate geometrical as well
as topological maps of the environments that accurately resemble the floor plans of the building.

Finally, we recapitulate the contributions and the resultsof our work in Chapter 7, followed by
a discussion of future work.
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Chapter 2

Notation

Before describing our developed techniques in the next chapters we will first review some basic
mathematical concepts. We start by introducing the coordinate system used in this work in the
next section. Subsequently, we briefly describe motion composition and spatial uncertainty in
Section 2.2, in particular the operators⊕ and⊖. In Section 2.3 we will review an alternative
way to represent rotations, namely quaternions, that allows us to easily compute intermediate
rotations by using spherical linear interpolation (slerp). Finally, we describe the symbols and
abbreviations used within this work in Section 2.4.

2.1 Coordinate System

Throughout this thesis we use the right-handed coordinate system, i.e.,x is pointing forwards,
y is pointing to the left, andz is pointing upwards as illustrated in Figure 2.1. Additionally, we
describe three dimensional rotations in Euler angles, namely roll (φ, rotation along thex-axis),
pitch (θ, rotation along they-axis), and yaw (ψ, rotation along thez-axis) and we assume each
rotation to lie within[−π, π).

x

y

z

φ
θ

ψ

Figure 2.1: We use the right-handed coordinate system within this thesis. Here,x is pointing forwards,y is headed
left, andz is pointing upwards. The Euler angles roll(φ), pitch (θ), and yaw(ψ) describe a (counter-clockwise)
rotation along thex, y, andz axis, respectively.

2.2 Motion Composition and Spatial Uncertainty

We use the notation of motion composition consisting of the operators⊕ ("oplus") and⊖ ("omi-
nus") as proposed by Smith and Cheeseman [138, 137]. These operators generalize the com-
position operators+ and− from vectors to vectors represented in different referenceframes,
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xg

yg

xlyl

T1

T1,2

T2 = T1 ⊕ T1,2

Figure 2.2: A 2D example for motion composition. LetT1 denote the robots position and orientation with respect
to the global reference frame(xg, yg). Let furthermoreT1,2 be the transformation of the robot in the local reference
frame ofT1, i.e., given by the axesxl andyl. In this case,T2 denotes the pose of the robot in global reference
frame as the head-to-tail concatenation ofT1 andT1,2 and is calculated asT2 = T1 ⊕ T1,2.

in particular with respect to a rotation. Figure 2.2 shows ansmall example. Consider a robot
moving in 2D, i.e., a pose of the robot is represented by the coordinatesx andy and the rotation
ψ (i.e., the yaw). Here, the robot starts atT1 and moves to some location (which we will call
laterT2). However, the robot’s sensors are only able to measure a relative transformationT1,2,
in the robot’s local reference frame made of the axesxl andyl, whereas the starting position,
T1 is expressed in the global reference frame defined by the axesxg andyg. The goal now is to
calculate the final location in the global reference frame. In other words, givenT1 andT1,2, we
want to calculateT2. This kind of concatenation is also known ashead-to-tailcomposition and
we calculateT2 asT2 = T1 ⊕ T1,2.
In general, however, the estimates of a spatial transformations are affected by noise and we
assume that this noise is Gaussian. We furthermore assume that the transformations are mu-
tually independent, i.e., the covariance between two different transformations is zero. In the
remainder of this section, we will describe the operators⊕ and⊖ in detail for the 2D case (i.e.,
x = (x, y, ψ)) and refer the reader to [138, 137] for a description of the full 3D case.
Let 〈Tij,Σij〉 be an uncertain spatial relationship from node (location)i to node (location)j.
An uncertain spatial relationship consists of a transformation Tij (the mean of the relationship)
and the corresponding covarianceΣij. Let furthermoreTij consist of the rotationRij and the
translationtij with

Rij =

(
cosψij − sinψij
sinψij cosψij

)
, and (2.1)

tij = (xij, yij). (2.2)

The motion composition operator,⊕, is then defined as

〈Tik,Σik〉 := 〈Tij,Σij〉 ⊕ 〈Tjk,Σjk〉, with (2.3)

Tik := Tij ⊕ Tjk, consisting of (2.4)

Rik = RijRjk, and (2.5)

tik = Rijtjk + tij . (2.6)
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Similarly, we have

Σik := Σij ⊕ Σjk (2.7)

= J1⊕ΣijJ
T
1⊕ + J2⊕ΣjkJ

T
2⊕, (2.8)

with J1⊕ andJ2⊕ defined as

∂Tik
∂Tij

=: J1⊕ =




1 0 −(yij − yik)
0 1 (−xij + xik)
0 0 1


 , and (2.9)

∂Tik
∂Tjk

=: J2⊕ =




cosψij − sinψij 0
sinψij cosψij 0

0 0 1


 (2.10)

=


 Rij

0
0

0 0 1


 . (2.11)

The inverse operator,⊖ for a spatial transformation,〈Tij,Σij〉 is defined as

〈Tji,Σji〉 := ⊖〈Tij,Σij〉, with (2.12)

Tji := ⊖Tij, consisting of (2.13)

Rji = RT
ij, and (2.14)

tji = −RT
ijtij. (2.15)

Additionally, we have

Σji := ⊖Σij (2.16)

= J⊖ΣijJ
T
⊖ , with (2.17)

∂Tji
∂Tij

=: J⊖ =




− cosψij − sinψij yji
sinψij − cosψij −xji

0 0 −1


 (2.18)

Given the inverse operator,⊖, for an uncertain transformation〈Tij,Σij〉 we can finally define
the inverse of a motion composition, i.e.,

〈Tjk,Σjk〉 = (⊖〈Tij,Σij〉)⊕ 〈Tik,Σik〉. (2.19)

However, we will use the more intuitive notation of Lu and Milios [100] for the inverse, namely

〈Tjk,Σjk〉 = 〈Tik,Σik〉 ⊖ 〈Tij ,Σij〉 := (⊖〈Tij,Σij〉)⊕ 〈Tik,Σik〉, as well as (2.20)

Tjk = Tik ⊖ Tij := (⊖Tij)⊕ Tik. (2.21)

2.3 Quaternions

There are different ways to represent rotations in a mathematical way. Up to now, we de-
scribed a rotation by a rotation matrix,R. However, we will also use a different representation,
namely quaternions, since they allow us to easily calculateintermediate rotations. The follow-
ing section gives a brief description about quaternions andwe refer to Ken Shoemake’s technical
report [135] for more details.
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A quaternionq is a vector of size1 × 4 and describes a full three-dimensional rotation. More
formally, a quaternionq is defined as (see also [135]):

q := 〈w,v〉 ,withw ∈ R,v ∈ R
3 (2.22)

= 〈w, (x, y, z)︸ ︷︷ ︸
v

〉 ,withw, x, y, z ∈ R (2.23)

= w + ix+ jy + kz, (2.24)

with w being the real part of the quaternion andv being the imaginary part respectively. In the
equation above,i, j, andk denote the complex dimensions with

i2 = j2 = k2 = i · j · k = −1. (2.25)

Note that from the equation above we also obtain

i · j = k, and (2.26)

i · j = −j · i. (2.27)

The set of quaternions forms a division ring (i.e., a field without commutativity for the multipli-
cation operator) with the addition+ and the multiplication· as following. With respect to the
addition operator,+, the set of quaternions forms a commutative group with

q1 + q2 = 〈w1,v1〉+ 〈w2,v2〉 (2.28)

:= 〈w1 + w2,v1 + v2〉 (2.29)

= q2 + q1. (2.30)

(q1 + q2) + q3 = q1 + (q2 + q3). (2.31)

q+ 0 = 0+ q (2.32)

= q, with0 = 〈0, 0, 0, 0〉, (2.33)

q+ (−q) = 0. (2.34)

In terms of the multiplication operator,·, the set of quaternions forms a group without commu-
tativity, i.e., the following holds:

q1 · q2 = 〈w1,v1〉 · 〈w2,v2〉 (2.35)

:= 〈w1 · w2 − v1 · v
T
2 ,v1 × v2 + w1 · v2 + w2 · v1〉. (2.36)

Here,v1 × v2 denotes the cross product between the two vectors. Furthermore, we have

(q1 · q2) · q3 = q1 · (q2 · q3), (2.37)

s · q = q · s, for s ∈ R (2.38)

= 〈s, (0, 0, 0)〉 · 〈w,v〉 (2.39)

= 〈s · w, s · v〉. (2.40)

1 · q = q · 1 (2.41)

= q. (2.42)

Let q∗ denote the conjugate ofq with

q∗ = 〈w,v〉∗ (2.43)

:= 〈w,−v〉. (2.44)
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We can now define the inverse quaternionq−1 of q as

q−1 :=
q∗

‖q‖
, with (2.45)

‖q‖ := q · q∗ (2.46)

= q∗ · q (2.47)

= w2 + x2 + y2 + z2. (2.48)

(2.49)

We also have

(s1 · q1 + s2 · q2) · q3 = s1 · q1 · q3 + s2 · q2 · q3, and (2.50)

q3 · (s1 · q1 + s2 · q2) = s1 · q3 · q1 + s2 · q3 · q2. (2.51)

For the sake of completeness, we also state the following properties:

(q∗)∗ = q, (2.52)

(q1 · q2)
∗ = q∗

2 · q
∗
1 (2.53)

(q1 + q2)
∗ = q∗

1 + q∗
2 (2.54)

‖q1 · q2‖ = ‖q1‖ · ‖q2‖ (2.55)

Given a unit quaternionq, i.e.,‖q‖ = 1, we can reformulate it as

q = 〈w,v〉 (2.56)

= 〈cosα, sinα · v̂〉 (2.57)

for a vectorv̂ ∈ R
3 with ‖v̂‖2 = 1. In this case, the quaternionq describes a rotation of2 · α

along the rotational axiŝv.

Spherical Linear Interpolation (SLERP) Using quaternions to represent three-dimensional
rotations allows us to calculate intermediate rotations using spherical linear interpolation.
Let q1 ⊗ q2 denote the inner product of two unit quaternions, i.e.,q1 · q

T
2 while treating both

quaternions as vectors which results in

q1 ⊗ q2 = w1 · w2 + x1 · x2 + y1 · y2 + z1 · z2 (2.58)

= cos β, for aβ ∈ [−π, π). (2.59)

Given a scalaru ∈ [0, 1], slerp∗(q1,q2, u) calculates an intermediate rotation between the unit
quaternionsq1 andq2 as

slerp∗(q1,q2, u) = q1 ·
sin(β · (1− u))

sin β
+ q2

sin(β · u)

sin β
(2.60)

(2.61)

However, since all unit quaternion form a sphere, there exits two paths on the sphere fromq1 to
q2. In order to get the “shorter” path, we finally calculate

slerp(q1,q2, u) =

{
slerp∗(q1,q2, u) if ‖q1 − q2‖ ≤ ‖q1 + q2‖
slerp∗(q1,−q2, u) else.

(2.62)

In Section 4.3, we will use the notation slerp(Q,w) for a given a rotation matrixQ. Here,
slerp(Q,w) is short for slerp(〈1, (0, 0, 0)〉,q, w) with q being the quaternion expressing the
same rotation as the rotation matrixQ. Recall that〈1, (0, 0, 0)〉 is the neutral element of the
multiplication, i.e., expressing a “zero-rotation”.
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2.4 Symbols and Abbreviations

The following tables summarize the symbols and abbreviations used in our work.

Symbol Description

x scalar variable
x, (. . .) vector
A matrix
{. . .} set
〈. . .〉 ordered set (tuple)
xi i-th element of vectorx
A(ij) element in thei-th row andj-th column of matrixA
xt, At, t ∈ N time indexed vector / matrix
xT , AT transpose of vector / matrix
I identity matrix
Ω information matrix
p(·) a probability density function
p(A | B) conditional probability of eventA, given evidenceB
Tij, δij a transformation from reference / nodei to reference / nodej
〈i, j〉 a constraint between nodei and nodej
N (x;µ, σ) a Gaussian distribution with meanµ and standard deviationσ.

Abbreviation Description

DOF degree of freedom
GPS global positioning system
IMU inertial measurement unit
MCL monte carlo localization
MEMS microelectromechanical systems
MHT multi hypothesis tracker
ML maximum likelihood
MLR multi-level relaxation
NARF normal aligned radial features
PDF probability density function
PID proportional integral differential
PGD preconditioned gradient descent
PPO path-parametrized optimization algorithm
RMSE root mean square error
SGD stochastic gradient descent
SURF speeded up robust features
SLAM simultaneous localization and mapping
SLERP spherical linear interpolation
TORO tree-based network optimization algorithm



Part I

Graph-Based Optimization for Efficient
Mapping



16



Chapter 3

Basics on Optimization through Error
Minimization

We review the general problem formulation for error minimiz ation
using a graph-based model. We then describe least squares error
minimization in general and show that graph-based optimization is
an instance of least squares minimization. Subsequently, we focus
on preconditioned gradient descent and stochastic gradient descent
for error minimization. Finally, we describe path parametr ized op-
timization (PPO), a combination of both approaches entitled for 2D
robotic mapping, that forms the basis to our tree-based network
optimization (TORO) algorithm presented in the next chapter.

As stated in the introduction the goal of the first part of thisthesis is to estimate a configuration
of the environment, given the history of observations. A common way of doing this is through
a graph-based model consisting of a set of nodes and edges. Although a graph can be used to
model arbitrary relationships, our focus is on simultaneous localization and mapping (SLAM).
In our case, a node of the graph represents the knowledge of anentity, like a robot pose or
a landmark location, whereas an edge between two nodes reflect spatial constraints between
those. These spatial constraints arise from observations like odometry, laser scan matching,
vision tracking or another sensor, the robot is equipped with. Due to the noisy measurements,
all estimates within the problem formulation are affected by noise as well. Therefore, a con-
figuration of the nodes that satisfies a constraint is likely to be a bad configuration for another
constraint and vice versa. In this case, we say that these constraints have a contrary effect on
each other. In other words, we cannot compute a configurationof the nodes that perfectly satis-
fies all of the constraints in the general case. Our goal is therefore to calculate the configuration
thatminimizesthe overall error introduced by the constraints, thusmaximizingthe probability
of a configuration, given the data.

This chapter is structured as follows. We first discuss the graph-based model formulation
in Section 3.1 and non-linear least squares in general in Section 3.2. We describe the theory of
preconditioned gradient descent (PGD) with a special attention to Gauss Newton in Section 3.3.
Subsequently, we describe stochastic gradient descent (SGD) in Section 3.4. Finally, we present
PPO, a variant of SGD introduced by Olsonet al.in Section 3.5. This approach, a combination
of SGD and an approximation to Gauss Newton, forms the basis to our tree-based network
optimization algorithm (TORO) for robotic mapping presented in the next chapter.
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Figure 3.1: A simple graph consisting of robot posesp1, . . . ,p6 (blue circles) and landmarksl1, . . . , l3 (green
stars). Constraints between robot poses are visualized as black lines and constraints between a robot pose and
a landmark are displayed as orange dashed lines in (a). The landmarks can be marginalized out of the estima-
tion problem by transforming the edges into observations between robot poses. This is visualized in (b) where
constraints between poses and landmarks from (a) are transformed into edges between robot poses, visualized by
orange lines in (b).

a) b)

Figure 3.2: Example for optimization: The robot traverses a loop and re-localizes to a previously seen location
indicated by the dashed orange arrow in (a). Minimizing the overall error in this network results in moving all
nodes as visualized by the black solid arrows. The resultingoptimal configuration of the nodes is shown in (b).

3.1 The Graph-Based Model Formulation

A common way of describing a SLAM problem is through its graph-based (also called network-
based) model. In general, a GraphG = (x, C) consists of a set of nodesx and a set of edgesC.
In our particular case, the nodes represent either robot poses or landmark locations, whereas
edges between two nodes describe the spatial relation between those. Note, that our goal is
to find the most likely configuration of the nodes, given the edges. In other words, we want
to calculate the most likely configuration of the nodes explained by the data (i.e., satisfying
the edges). Thus it is convenient to call the edges alsoconstraints. For an edge connecting two
robot poses, the spatial constraint can either arise from motion commands or incremental motion
estimation. If an edge connects a robot pose and a landmark, the spatial constraint arises from an
observation (e.g., visual features). Figure 3.1 (a) shows asmall graph consisting of robot poses
p1, . . . ,p6 (blue circles) and landmarksl1, . . . , l3 (green stars). Here, constraints (edges) are
visualized through lines for the case of connecting two robot poses (black lines) or indicating
an observation of a landmark (dashed orange lines). In general, a constraint does not refer to a
perfect observation or measurement but rather represents adistribution. In our case, we assume
the error in the measurements to be affected by white noise only, i.e., we assume this distribution
to be Gaussian. Thus, each constraint is made of a mean observation and the corresponding
uncertainty (which is not visualized in Figure 3.1). As shown by Montemerloet al. [105, 103]
we can remove the landmarks from the estimation process by marginalizing them out of the
problem formulation. Marginalizing out a landmark, however, results in connecting all nodes
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pi
pj

mappingfij(x)

erroreij(x)observationδij

uncertainty
Σij = Ω−1

ij

Figure 3.3: Terminology for describing a graphG = (x, C). The set of parametersx can be transformed into a
set of posesp, with pi,pj ∈ p. An observation of nodej seen from nodei is denoted asδij and is associated
with an information matrixΩij describing the uncertainty of the observation. The function fij maps the current
configuration into a zero noise observation of nodej seen from nodei, thus computing the expected observation.
The difference between the expected and the true observation is the erroreij of the corresponding constraint.

from which this landmark has been observed. By doing so, the information encoded in the
observation of the landmark was transformed into an observation made about a robot pose.
This is visualized in Figure 3.1 (b). Note that the two constraints between nodep1 and node
p2 can be merged into one but this is omitted here for better visibility. As stated above, by
optimizing the graph we seek to find the most likely configuration of the nodes, given the data
(constraints). Consider for example the graph shown in Figure 3.2. Here, the robot traverses a
cyclic path and re-localizes itself in a previously visitedpart of the environment. This is known
in the literature asloop closing. The corresponding constraint is visualized by the dashed orange
arrow in (a) where both poses connected through this arrow are the same. Optimizing this graph
results in moving all nodes in order to minimize the overall error (indicated by the solid black
arrows in (a)) resulting in the configuration shown in Figure3.2 (b).
Assuming the constraints are affected by white noise we can describe a graph more formally
using the following definitions (see also Figure 3.3):

• Let x = (x1, . . . ,xn) be a vector ofn parameters describing the configuration of the
graph. Note that these parameters could for example be absolute posesp = (p1, . . . ,pn)
or any arbitrary set of variables. In the latter case, we assume there exist a bijective
function g mapping these variables to absolute poses (real world coordinates), thus we
assumeg(x) = p andg−1(p) = x. The parameters are the nodes in the graph structure.

• Let δij ∈ R
k×1 be a measurement between nodei and nodej. It refers to a relative

observation about nodej seen from nodei. Here,k is the dimension of the observation
space. It is the mean of the Gaussian observation distribution.

• The uncertaintyΣij ∈ R
k×k associated with the observationδij is expressed by the infor-

mation matrixΩij = Σ−1
ij .

• The observationδij, together with the information matrixΩij form a constraint. These
constraints are the edges in the graph structure. Note that we will omit to draw the uncer-
tainty ellipsoid in upcoming figures for better readability.

• C = (〈i1, j1〉, . . . , 〈im, jm〉) is the set of all constraints and the associated information
matrices, with〈i, j〉 being short for〈δij,Ωij〉.

• Finally, fij(x) : Rdim(x) → R
k×1 is a function mapping the current configuration to a

zero noise observation of nodej seen from nodei. In other words,fij(x) computes the
expectedobservation given the current configuration of the nodes.
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Having this definitions at hand we can formulate the optimization problem as follows. Given
the set of poses and constraints encoded by the nodes and edges respectively we want to find
the configuration that maximizes the likelihood given the data encoded in the edges. Thus, we
want to findx∗ with

x∗ = argmax
x

p(x | C), (3.1)

wherep(·) is an appropriate probability density function (pdf). In general it is inconvenient
to evaluatep(x | C) since we need to reason about the state given the measurement(i.e., it is
a diagnostic system). The idea is to apply Bayes’ rule, transform the problem into a causal
system and reason about the likelihood of the data, given thecurrent state. Applying Bayes’
rule to Eq. (3.1) leads to

x∗ = argmax
x

p(x | C) (3.2)

Bayes’ rule
= argmax

x

p(C | x) p(x)

p(C)
, (3.3)

wherep(C) is constant, sincex is the random variable of our system. In addition, if no further
prior information about the configuration space is available, we can assumep(x) to be uniformly
distributed. This allows us to simplify the equation above and formulate the goal to find the
configurationx∗, with

x∗ = argmax
x

p(C | x). (3.4)

However, evaluating this equation is in general still unpractical, if not unfeasible. Therefore
it is common within the robotics community to assume independence between individual con-
straints. We further assume that the constraints, and thus the measurement errors, are affected
by white noise only. Although this assumption is violated tosome degree in the real world (i.e.,
a sensor can have a bias in the estimate due to environmental conditions like temperature or
humidity) we neglect the error that is introduced by this assumption. This allows us to simplify
p(C | x) in Equation (3.4) to

p(C | x) =
∏

〈i,j〉∈C

p(〈i, j〉 | x). (3.5)

Keeping this in mind we need to define theerror and residual of a constraint. Given two
nodesi , j and a constraint〈i, j〉 = 〈δij,Ωij〉 between these we can define the erroreij and the
residualrij as

eij(x) = fij(x)− δij (3.6)

rij(x) = −eij(x). (3.7)

The erroreij is also visualized in Figure 3.3. Observe that the residual is just the inverse of the
error. In other words, moving nodej along the direction of the residualrij will lower the error
eij until the minimumeij = rij = 0 is reached. This condition is fulfilled when the observation
δij perfectly matches the configuration of the nodesi andj and is called theequilibriumof that
constraint.

Due to the noisy measurements, however, we will in general never be able to reach the
equilibrium of all constraints simultaneously. Thereforeour goal is to find a configuration that
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maximizes the overall likelihood. We will later see, that maximizing the overall likelihood is
equal to minimizing the overall error introduced by the constraints. Recall that we assume the
observation (Eq. (3.5)) to be Gaussian. Thus, the likelihood p(〈i, j〉 | x) of a constraint〈i, j〉 is

p(〈i, j〉 | x) =
1

(2π)k/2 |Σij|1/2
exp(−

1

2
(fij(x)− δij)

TΩij(fij(x)− δij)). (3.8)

However, maximizing Eq. (3.5) is equal to minimize its negative log likelihood− ln(p(C | x)).
This leads to

− ln(p(C | x))
Eq. (3.5)
= − ln


 ∏

〈i,j〉∈C

p(〈i, j〉 | x)


 (3.9)

=
∑

〈i,j〉∈C

− ln (p(〈i, j〉 | x)) (3.10)

with

− ln(p(〈i, j〉 | x)) = − ln(
1

(2π)k/2 |Σij|1/2
exp(−

1

2
(fij(x)− δij)

TΩij(fij(x)− δij)))

= ln((2π)k/2 |Σij|
1/2) +

1

2
(fij(x)− δij)

TΩij(fij(x)− δij))

∝ (fij(x)− δij)
TΩij(fij(x)− δij))

= eTij(x) Ωij eij(x) (3.11)

= rTij(x) Ωij rij(x) (3.12)

=: χ2
ij(x). (3.13)

Note thatχij(x) is the Mahalanobis distance and represents the error between the predictionfij
and the observationδij as a multiple of standard deviations. The notation ofχ2

ij has been chosen
on purpose because the underlying likelihood is Gaussian and thus the squared Mahalanobis
distance follows aχ2

p distribution of degreep, equal to the dimension of the error vectoreij(x).
This allows us to rewrite Equation (3.9) to

− ln (p(C | x))
Eq. (3.5)
= − ln


 ∏

〈i,j〉∈C

p(〈i, j〉 | x


 (3.14)

Eq. (3.10)
=

∑

〈i,j〉∈C

− ln (p(〈i, j〉 | x)) (3.15)

Eq. (3.13)
=

∑

〈i,j〉∈C

χ2
ij(x) (3.16)

=: χ2(x). (3.17)

Recalling the original problem formulation, namely finding the configurationx∗ that maximizes
the overall observation likelihood, we can finally reformulate this problem into calculating the
configurationx∗ with

x∗ = argmax
x

p(C | x) (3.18)

= argmin
x

− ln(p(C | x)) (3.19)

Eq. (3.17)
= argmin

x

χ2(x). (3.20)
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To sum up, maximizing the overall observation likelihood itis equal to find the configuration
x∗ that minimizes the observation error encoded in the constraints, namelyχ2. Unfortunately,
finding this global minimum in general is very hard and for most minimization problems we
can not even guarantee that a solution found by an algorithm is indeed the global minimum. We
therefore relax this requirement and focus on calculating asolution that is a local minimum of
the error function. In other words, we seek to find anx∗ such that for a small positive numberǫ
the following holds:

∀x : ‖x− x∗‖ < ǫ→ χ2(x∗) ≤ χ2(x). (3.21)

Having this at hand we now need techniques for calculatingx∗ (and thus minimize the error).
Since the error function in general is non-linear (f.e., dueto rotations), we cannot calculate
x∗ in one step. Therefore it is common to use iterative approaches, i.e., adjusting the actual
configurationxt at timet to a new one,xt+1 that lowers the overall error. In the next section
we will briefly review least squares in general and show that the graph-based model formula-
tion for robotic mapping is an instance of it. Subsequently,we review preconditioned gradient
descend-based and stochastic gradient descent which form the basis of the optimization ap-
proach proposed by Olsonet al., that in turn is the basis to our tree-based network optimizer
(TORO) described in Chapter 4. Note that we will call Olson’s approach also PPO throughout
this work, that is short for path-parametrized optimization.

3.2 General Least Squares Problem Formulation

The general least squares problem can be formulated as follows (see also Fransenet al. [52]).
Givenm functionsfi : Rn → R with m ≥ n and theerror function(also calledcost function)
f = (f1, . . . , fm)

T : Rn → R
m, our goal is to findx∗ with

x∗ = argmin
x

(F (x)), where (3.22)

F (x) =
m∑

i=1

fi(x)
2 = f(x)Tf(x) = ‖f(x)‖2. (3.23)

In the special case where in the equation abovef(x) is of the form

f(x) = b− Ax, (3.24)

with known vectorb ∈ R
m and known matrixA ∈ R

m×n, we call it a linear least squares
problem, otherwise we refer to it as anon-linearleast squares problem.

Note that least squares is a variant of the more general minimization problem, namely find-
ing a minimumx∗ for someobjective functionF̂ (x). In other words, a minimization problem
is called least squares, if and only if̂F (x) = F (x). However, as already mentioned in the
previous section, it is in general hard to find the global minimum of a functionF (x), especially
on a real valued configuration spaceRn. Thus, it is common to solve a “simpler” problem,
namely finding alocal minimum ofF (x). In the remainder of this section, we will first show
that graph-based optimization as formulated in the last section is indeed a least squares problem
and subsequently focus on basic concepts of iterative methods for finding a local minimum for
Equation 3.23. Indeed, all general methods for non-linear optimization are iterative.

Observe that our goal in graph optimization is to minimize the overallχ2 error, that is

χ2(x) =
∑

〈i,j〉∈C

rTij(x) Ωij rij(x) (3.25)
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Since the covariance matrixΣij = Ω−1
ij is positive definite alsoΩij is positive definite [120] and

we have:

∀〈i, j〉 ∈ C : rTij(x) Ωij rij(x) ≥ 0, and therefore (3.26)

∀〈i, j〉 ∈ C ∃hij(x) : r
T
ij(x) Ωij rij(x) = hij(x)

2. (3.27)

Here, the equality in Equation (3.26) originates from the fact thatrij(x) can be zero, i.e., when
the equilibrium of that constraint is reached. Except of thedifferent indexing between Equa-
tion (3.23) and Equation (3.27) we finally obtain

F (x)
Eq. (3.23)
=

m∑

i=1

fi(x)
2 (3.28)

Eq. (3.27)
=

∑

〈i,j〉∈C

hij(x)
2 (3.29)

= χ2(x), (3.30)

which proofs that graph-based optimization is an instance of least squares minimization.
Looking in more detail on iterative approaches for least squares error minimization, we can
summarize them through the following steps:

Algorithm 1 General Error Minimization Technique

1: choose an initial configurationx0 (also calledinitial guess).
2: t = 1 (t is the currentiteration)
3: while convergence criterion is not fulfilled andt < tmax do
4: choose direction:∆xt
5: choose preconditioner:Kt (if Kt = αtI, then it is also calledstep length)
6: update actual configuration:xt+1 = xt +Kt∆xt
7: t = t+ 1
8: end while

All algorithms for error minimization differ in the calculated direction and the chosen precondi-
tioning matrix (lines 4 + 5 in the algorithm above). However,we will focus on error minimiza-
tion techniques, following thedescending condition, i.e,

∃t0 ∈ N : ∀t > t0 : F (xt+1) < F (xt). (3.31)

In other words, we focus on techniques that lower the error ineach stept > t0 but relax
this condition in the first steps (i.e.,t ≤ t0) and thus allow the algorithm to escape from a
local minimum. There exist different types of convergence criteria but in work we say that an
algorithm converged to a solution if for a manually chosenǫ > 0 the following holds:

‖F (xt+1)− F (xt)‖ < ǫ. (3.32)

Given this conditions, the most popular error minimizationtechniques include

• gradient descent [131] (see next section)

• stochastic gradient descent [17] (see Section 3.4)

• Newton’s method [131]
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• Gauss-Newton (GN) [139] (see next section)

• Levenberg-Marquardt (LM) [101]

• Powell’s Dogleg method [32, 119]

• Quasi-Newton methods (QN) [28]

• Fletcher-Reeves [49, 6]

• Polak-Ribière [119]

as well as variants or hybrids between the above [119, 139]. Note, that the first six methods are
related to gradient descent, whereas the last two methods minimize the error based on conjugate
gradient.

As can be seen, there exits many techniques for finding a localminimum for Equation (3.25).
However, depending on the problem structure and the configuration space, some algorithms are
better suited for optimization than others. In the context of robotic mapping we will see that path
parametrized optimization (PPO) as described in Section 3.5 performs especially well. This ap-
proach is a hybrid between an approximation to Gauss-Newtonand stochastic gradient descent.
In the remainder of this chapter we will therefore first introduce preconditioned gradient de-
scent (PGD) and focus on a specific instance of PGD, namely Gauss-Newton. Subsequently we
describe stochastic gradient descent and present path parametrized optimization, PPO, which
forms the basis to our tree-based network optimizer (TORO) in the next Chapter.

3.3 Preconditioned Gradient Descent-Based Approaches

In the previous section, we formulated the optimization problem in terms of least squares error
minimization. Since the error function in general is non-linear, we cannot calculate the optimal
configuration of the nodes within one step, i.e., calculate aleast-square solution. It is therefore
necessary to estimate the configuration in an iterative manner. Reformulating the optimization
problem in terms of error minimization allows us to use a wideset of algorithms based on
(preconditioned) gradient descent. Intuitively, by minimizing the error of the configuration we
seek to find anx∗ where the derivative of the error function is zero (otherwise this configuration
would not be a local minimum). Note that the gradient of the error function is a vector pointing
towards the steepest ascent. Moving the configuration alongthe negative of the gradient would
lead to a new configuration with a smaller error than before. Repeating this process until no
major difference in the configuration appears (and thus the length of the vector is close to zero)
leads to a local minimum. In this case, we say that the algorithm is converged to a solution. In
the following, we will discuss iterative error minimization techniques based on preconditioned
gradient descent. Together with stochastic gradient descent (see next Section) this forms the
basis of the path-parametrized optimization algorithm (PPO) presented in Section 3.5.
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In its general form, preconditioned gradient descent can beformulated as

xt+1 = xt −K(xt)
∂χ2(xt)

∂x︸ ︷︷ ︸
−∆x

t

(3.33)

= xt −K(xt)
∑

〈i,j〉∈C

∂χ2
ij(x

t)

∂x︸ ︷︷ ︸
−∆x

t
ij

(3.34)

= xt +K(xt)
∑

〈i,j〉∈C

∆xtij. (3.35)

The individual components of this equation are:

• xt,xt+1 is the configuration of the nodes at time (iteration)t andt+ 1 respectively.

• K(xt) denotes thepreconditioningmatrix at timet. This matrix can in general can be
chosenarbitrarily but mostly (and will be also in our case) is related to the Hessian of the
residual.

• Finally,
∂χ2

ij(x
t)

∂x
is the gradient of theχ2

ij error between nodei and nodej.

In most cases, an update after processing each constraint exactly once is called aniteration. Up
to now, this is equal to a step in time, i.e., going fromt to t+ 1. However, this must not hold in
general. To prevent any ambiguity in the upcoming sections,we will refer to an iteration when
all constraints have been processed exactly once. If an iteration is different from an update
t→ t+ 1, we will refer to the latter as astep. It is important to keep in mind, that the design of
the configuration space and the choice of the error function have a critical impact on the number
of iterations needed until convergence (i.e.‖χ2(xt+1) − χ2(xt)‖ < ǫ, for a manually chosen
ǫ > 0) of the algorithm as well as how fast a single iteration can becalculated [59, 94]. To get
an intuition why this is the case and how path parametrized optimization (PPO) in the context
of robotic mapping is obtained, we need to have a more detailed look at the gradient of theχ2

ij

error and the preconditioning matrix. First, the gradient∂χ2
ij(x

t)/∂x is reformulated as

∂χ2
ij(x

t)

∂x
=

∂χ2
ij(x

t)

∂rij

∂rij(x
t)

∂x
(3.36)

=
∂(rij(x

t)Ωijrij(x
t))

∂rij

∂(δij − fij(x
t))

∂x
(3.37)

= −2JTij (x
t)Ωijrij(x

t), with Jij(x
t) =

∂eij(x
t)

∂x
=
∂fij(x

t)

∂x
(3.38)

Here,Jij(xt) is theJacobianof the erroreij(x). Using this result (Eq. (3.38)), we can rewrite
Equation (3.34) to

xt+1 = xt + 2K(xt)
∑

〈i,j〉∈C

JTij (x
t)Ωijrij(x

t). (3.39)

In the special case where we removeK(xt) from the equation above we obtain the simplest
form of gradient descent, namely

xt+1 = xt + 2
∑

〈i,j〉∈C

JTij (x
t)Ωijrij(x

t). (3.40)
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Reading Equation (3.40) from right to left allows us to explain the update rule in an intuitive
fashion.

• The residualrij is the negative of the error. Thus, moving the node along the residual will
decrease the error introduced by the corresponding constraint 〈i, j〉.

• The residual is modified according to the uncertaintyΣij = Ω−1
ij associated with the

constraint. In this case, the value is decreased, if the uncertainty is high (and thus the
information gain is low) and vice versa.

• Finally, the JacobianJij transforms the modificationΩijrij from error space into config-
uration space.

Unfortunately, removingK(xt) in general leads to suboptimal convergence rates especially
when the error surface is close to planar. Therefore many improved versions of gradient descent-
based techniques include a preconditioning matrix speeding up the convergence rate. One pos-
sibility to obtain an appropriateK(xt) is to calculate in each step an update∆xt that zeroes the
current gradient. Note that if the error function is linear,we converge within one step. In our
case, however, the error function includes both translational as well as rotational components
resulting in a non-linear error function. Therefore it is convenient to assume local linearity only
(by zeroing the gradient at timet), resulting in the popular Gauss-Newton algorithm.

In order to calculate the step that zeroes the current gradient we need to start with the Taylor
expansion of the gradient which is

∑

〈i,j〉∈C

∂χ2
ij(x

t +∆xt)

∂x
=

∑

〈i,j〉∈C

(
−2JTij (x

t)Ωijrij(x
t) +

∂2χ2
ij(x

t)

∂x2
∆xt +O

(
(∆xt)2

))
.

As stated above, we assume local linearity of the erroreij which implies that we can approxi-
mate theχ2 error locally by a polynom of degree 2. In other words, we assume the higher orders
O(∆x2) to be small and thus neglect their contribution in the above equation. Thus we get

∑

〈i,j〉∈C

∂χ2
ij(x

t +∆xt)

∂x
≈

∑

〈i,j〉∈C

(
−2JTij (x

t)Ωijrij(x
t) +

∂2χ2
ij(x

t)

∂x2
∆xt

)
(3.41)

=
∑

〈i,j〉∈C

(
−2JTij (x

t)Ωijrij(x
t)
)
+
∑

〈i,j〉∈C

(
∂2χ2

ij(x
t)

∂x2

)
∆xt. (3.42)

Setting this equation to zero yields the following expression for the increment∆xt at timet:

∆xt =


 ∑

〈i,j〉∈C

∂2χ2
ij(x

t)

∂x2




−1

∑

〈i,j〉∈C

2JTij (x
t)Ωijrij(x

t) (3.43)

= 2H(xt)−1
∑

〈i,j〉∈C

JTij (x
t)Ωijrij(x

t), (3.44)
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with H(xt) being the Hessian that we can further expand to

H(xt) =
∑

〈i,j〉∈C

∂2χ2
ij(x

t)

∂x2
=

∑

〈i,j〉∈C

−2JTij (x
t)Ωijrij(x

t)

∂x
(3.45)

=
∑

〈i,j〉∈C

−2JTij (x
t)Ωij

rij(x
t)

∂x
−
∂fTij (x

t)

∂x2
Ωijrij(x

t) (3.46)

=
∑

〈i,j〉∈C

2JTij (x
t)ΩijJij(x

t) +
rTij(x

t)

∂x2
Ωijrij(x

t). (3.47)

Recall that we assume that we can sufficiently approximate theerroreij(x) (and therefore the
residualrij(x)) through a linear function in the local neighborhood ofxt. In this case, we can
neglect the contribution of the second derivative (right term in Equation (3.47)) and approximate
the HessianH(xt) with

H(xt) ≃
∑

〈i,j〉∈C

2JTij (x
t)ΩijJij(x

t), and (3.48)

H(xt)−1 ≃
1

2


 ∑

〈i,j〉∈C

JTij (x
t)ΩijJij(x

t)




−1

. (3.49)

This allows us to finally rewrite Equation (3.34) to

xt+1 = xt −K(xt)
∑

〈i,j〉∈C

∂χ2
ij(x

t)

∂x︸ ︷︷ ︸
−∆x

t
ij

(3.50)

Eq. (3.44)
= xt +H(xt)−1

∑

〈i,j〉∈C

2JTij (x
t)Ωijrij(x

t) (3.51)

Eq. (3.49)
= xt +


 ∑

〈i,j〉∈C

JTij (x
t)ΩijJij(x

t)




−1

∑

〈i,j〉∈C

JTij (x
t)Ωijrij(x

t). (3.52)

As already mentioned at the beginning of this chapter, the number of iterations needed until
convergence is also dependent on the design of the configurations space and the error func-
tion. In other words: A constraint〈i, j〉 can in general be dependent on more variables than
xi, . . . ,xj. Let dep(〈i, j〉) denote this set of variables. Consider another constraint〈i′, j′〉 with
j′ > i′ > j and the corresponding set of variables the constraint is dependent on, dep(〈i′, j′〉).
One parametrization space could lead to an intersection setdep(〈i, j〉) ∩ dep(〈i′, j′〉) containing
more variables than in another parametrization space. However, the less variables a constraint
is depending on the sparser is the Jacobian which in return allows us to use efficient algorithms
for inverting the Hessian. This speeds up the calculation ofa single iteration. On the other
hand, the non-linearity of the error function has a direct influence of the regularity of the Ja-
cobian (and thus the Hessian). A sub-optimal parametrization could lead to a highly irregular
Jacobian [59, 94]. This in turn allows only for small steps, since the change∆xt calculated
in iterationt is based on a linearization of the error function that is thenvalid only in a small
neighborhood of the current configurationx.



28 Chapter 3. Basics on Optimization through Error Minimization

In the case of robotic mapping, we will in general not be able to calculate a configuration that
perfectly matches all the constraints. Our goal therefore is to minimize the overall observation
error. If we have a closer look at Equation (3.52) we observe,that in each iterationt the change
∆xt is calculated using the inverse of the Hessian. In our case, however, this formulation bears
several weak points. First of all, the Hessian is of sizen× n, with n being the number of nodes
in the network and is re-calculated in each iteration. This calculation, however, is not feasible in
practise scenarios except for very small graphs. Additionally if we calculate each step based on
the gradient ofall constraints we reduce the chance of escaping from a local minimum. This risk
is increased in robotic mapping since it is more likely that constraints have contrary effects on
each other forcing the algorithm to converge to a suboptimalsolution. Indeed, Gauss-Newton
is highly sensitive to the initial guess and it is not even guaranteed to converge. It is noteworthy,
that the last remark is overcome by an improved variant knownas Levenberg-Marquardt which
has still the other problems discussed so far. These two points (computational complexity and
escape from local minimum) are addressed by usingstochastic gradient descent(SGD) which
is described in the next section and can be seen as partially orthogonal to the least squares
approach described above (Equation (3.52)). However, we will see in the next section, that this
comes at the cost of an much higher number of iterations needed until convergence.

3.4 Stochastic Gradient Descent

When we introduced Gauss-Newton, a special formulation of preconditioned gradient descent,
we saw, that in principle it bears two weak points. First, summing up the individual gradients
can reduce our chance to escape out of a local minimum. Second, the calculation of the full
Hessian is only feasible in the case of very small networks. Both points are addressed using
stochastic gradient descent (SGD). As already mentioned inthe previous section we can see
this approach to be partially orthogonal to Gauss-Newton. In case of SGD, we start with pure
gradient descent, i.e., removingK(xt) from Equation (3.39) yielding

xt+1 = xt + 2
∑

〈i,j〉∈C

JTij (x
t)Ωijrij(x

t) (3.53)

∝ xt +
∑

〈i,j〉∈C

JTij (x
t)Ωijrij(x

t). (3.54)

The key difference to gradient descent, however, is that we do not sum up all gradients within
one iteration but rather in each step chooseoneconstraint at random and calculate the update
given this gradient only. This leads to the following updaterule:

xt+1 = xt + JTij (x
t)Ωijrij(x

t), (3.55)

given the randomly selected constraint at timet is 〈i, j〉. Although this increases the chance
to escape from a local minimum we cannot guarantee convergence anymore. Consider two
constraints having an opposite effect on the same variable.Since one iteration contains the
variation of a single constraint only (and no Hessian) this would lead to an infinity oscillation.

In order to ensure convergence, we use a learning rateλt (also called damping factor) to
scale down the gradient over time. According to Bottou [22], we need to chooseλ(t) such that

∞∑

t=0

λ(t) = ∞,

∞∑

t=0

λ(t)2 <∞. (3.56)
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Figure 3.4: Choosing the configuration space can have critical impact onthe performance of the optimization
algorithm. Here, the nodes are parametrized in global posesp. If initially (a) all constraints except〈1, 2〉 are
perfectly matched, movingp2 along the residual will introduce an errore23 = −r23 in the next iteration (b).
Therefore updatingδ12 will slowly propagate through the network and the algorithmwill need many iterations
until convergence.

Note that this also implieslim
t→∞

λ(t) → 0. Implicitly enforcing convergence by introducing a

learning rate is also common within the machine learning community and leads to the update
rule of stochastic gradient descent (also called on-line gradient descent):

xt+1 = xt + λ(t)JTij (x
t)Ωijrij(x

t), (3.57)

Observe that no preconditioning of the gradient is applied which can result in many iterations
if the error function atxt is close to planar. Indeed, the combination of an approximation
of Gauss-Newton and stochastic gradient descent together with a novel parametrization of the
configuration space are the key ideas behind the PPO algorithm. This approach combines the
strengths of both algorithms and is described in the next section.

Compared to Gauss-Newton, the missing preconditioning matrix makes SGD even more
sensitive to the configuration space and the choice of the error function. Consider for example a
parametrization in global poses, i.e.,x = p. Figure 3.4 depicts a small example that will allow
us to emphasize this problem. In the initial configuration (Fig. 3.4(a)) all but the constraint
〈1, 2〉 are perfectly matched resulting in all residuals to be zero exceptr12. Since the nodes are
parametrized in global coordinates, movingp2 along the residualr12 will indeed satisfyδ12 but
on the other hand will result inr23 6= 0 after this update as shown in (b). Thus, an update of a
single constraint will slowly propagate through the network which will result in many iterations
needed until convergence is reached. Here, the correlationbetween individual constraints is
very high, since changing a variable locally (i.e.,p2 in Figure 3.4) will have an effect on all
subsequent variables.

On the other hand, if we parametrize the configuration space in such a way, that updating
a constraint immediately propagates to all subsequent nodes involved, this would lead to an al-
gorithm needing fewer iterations for converging. This effect is indicated in Figure 3.5. Starting
from the same configuration as in Figure 3.4 all constraints are perfectly matched exceptδ12. If
we could immediately propagate this update to all subsequent nodes as indicated by the dashed
gray arrows in (a) we would need fewer iterations for converging as indicated by Figure 3.5(b).
This behavior indeed is the key result of the PPO algorithm which is described in the next sec-
tion. This algorithm uses an approximation to Gauss-Newtonin combination with stochastic
gradient descent and forms the basis to our tree based network optimization algorithm (TORO)
presented in Chapter 4.
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Figure 3.5: Choosing a configuration space where updating an constrainthas the immediate effect of propagating
through the network (indicated by the gray dashed arrows) yields an algorithm needing fewer iterations for conver-
gence. This indeed is one of the key contributions of Olson’set al.PPO algorithm described in Section 3.5. This
algorithm forms the basis of our improved tree based networkoptimizer presented in Chapter 4.

3.5 A Variant of SGD for Efficient 2D Optimization

In the context of 2D robotic mapping, Olsonet al. [116] proposed path parametrized optimiza-
tion (PPO), that can be seen as a variant of stochastic gradient descent (SGD). In more detail,
it combines SGD with an approximation to Gauss-Newton and a novel parametrization of the
configuration space. Similar to SGD, this approach minimizes Equation (3.20) by iteratively
selectinga singleconstraint〈i, j〉 and moving the nodes of the graph in order to decrease the
error introduced by this constraint. Here, the stochastic element is given through a random
permutation of the order of the constraints in each iteration, i.e., until all constraints have been
used exactly once. Thus each iterationτ is equal to|C| time steps, with|C| being the number
of constraints. In the remainder of this section we will firstpresent the final update rule of this
approach. Subsequently we will introduce the parametrization used in this approach, derive the
corresponding Jacobian and discuss the remaining parts of the update rule in more detail.

Given a constraint〈i, j〉 selected at timet belonging to iterationτ , the nodes of the network
(graph) are updated according to the following equation:

xt+1 = xt + λ(τ)Kij(x
τ )JTij (x

t)Ωijrij(x
t)

︸ ︷︷ ︸
∆x

t
ij

. (3.58)

Reading the term∆xtij in Equation (3.58) from right to left gives an intuition about the sequen-
tial procedure of this approach:

• rij(x) is the residual which is the opposite of the error vector. Changing the configuration
of the nodes in the direction of the residualrij(x) will decrease the erroreij(x).

• Ωij represents the information matrix of the constraint〈i, j〉. Thus,Ωijrij(x) scales the
residual components according to the uncertainty of the constraint.

• Jij(x) is the Jacobian of the erroreij(x) and maps the (scaled) residual term from error
space into a variation of the nodes in configuration space.

• Kij(x
τ ) is a preconditioning matrix that is calculated at the beginning of iterationτ for

each constraint〈i, j〉 given the actual configuration of the nodes,xτ .

• Finally, λ(τ) is a learning rate with decreases with each iteration and makes the system
to converge to a (local) minimum.
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To understand how the individual components of Equation (3.58) look like, we first need to
introduce the parametrization used within this approach. As stated at the end of Section 3.3 the
choice of the parametrization has a high influence on the convergence speed of the algorithm.
To address the limitations introduced by using global posesin the case of 2D robotic mapping,
i.e.,pi = (xi, yi, ψi), Olson and colleagues propose to use a world representationbased on pose
differences that will allow us to propagate the update of a constraint〈i, j〉 to all subsequent
nodes.

In more detail, given the set of absolute posesp = (p1, . . . ,pn), with pi = (xi, yi, ψi),
we define a new parametrizationx = (x1, . . . ,xn), xi = (∆xi,∆yi,∆ψi), based on pose
differences with

x1 = p1

xi = pi − pi−1, for i > 1. (3.59)

Note thatpi − pi−1 is a pure vector subtraction, i.e, no motion composition is applied and that
we can easily recover the absolute poses, since

pi =
i∑

k=1

xk =
i∑

k=2

pk − pk−1︸ ︷︷ ︸
xk

+ p1︸︷︷︸
x1

. (3.60)

Thus, moving nodei in one iteration has the immediate effect of moving all nodesj > i as well.
It is therefore convenient to order the set of posesp (and thusx) ascending in time, i.e., given
pi obtained at timet1 andpj obtained at timet2, with j > i, we assumet1 < t2. This is easily
achieved by using the incoming order of the state estimationprocess. For better readability we
also assume without loss of generality that

• j > i for each pair of indexesj, i, and

• all constraints refer to observations made from the corresponding nodei about the corre-
sponding nodej, i.e., all constraints are of the form〈i, j〉.

The latter case can be enforced by replacing each constraint〈j, i〉 by a corresponding constraint
〈i, j〉. Given 〈j, i〉 is made up of two components, namely the information matrixΩji and
the relative transformationδji, consisting of a translationtji = (xji, yji) and a rotationψji
represented by the rotation matrix̃Rji. In more detail, given

R̃ji =

(
cosψji − sinψji
sinψji cosψji

)
and J⊖ji =


 R̃ji

−yji
xji

0 0 1


 ,

we can calculate〈i, j〉 = (δij ,Ωij) with δij = (xij, yij , ψij) through (see Section 2.2)

ψij = −ψji,

tij = −R̃jitji, and

Ωij = JT⊖jiΩjiJ⊖ji.

Recall that each constraint〈i, j〉 consists of a relative observation made about nodej, seen from
nodei, δij, and the corresponding information matrixΩij, thus, each constraint is expressed in
the local coordinate frame of nodei. On the other side all nodes, though represented through
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a relative sum, are in the global coordinate frame. To calculate the error of a constraint we
therefore need to transform both into the same coordinate frame. In the following we will
calculate the error in the local reference frame of nodei. Given the motion composition operator
⊕ and its inverse⊖ as introduced in Section 2.2 the erroreij(p) is

eij(p) = (pj ⊖ pi)− δij (3.61)

= RT
i (pj − pi)− δij (3.62)

= −rij(p). (3.63)

Here,Ri is the homogeneous rotation matrix with

Ri =




cosψi − sinψi 0

sinψi cosψi 0

0 0 1


 (3.64)

=


 R̃i

0

0

0 0 1


 (3.65)

Using the definition of relative displacements (Eq. (3.59))we can rewrite Equation (3.62) to

eij(x) = RT
i (pj − pi)− δij (3.66)

Eq. (3.59)
= RT

i

(
j∑

k=1

xk −
i∑

k=1

xk

)
− δij (3.67)

= RT
i

j∑

k=i+1

xk − δij . (3.68)

Recall thatxi = (∆xi,∆yi,∆ψi)
T and thatRi is the rotation of thei-th node in global coordi-

nate frame. This rotation is now calculated given the relative orientationsR∆i through

Ri =
i∏

k=1

R∆k =: R∆1:∆i, with (3.69)

R∆i =




cos∆ψi − sin∆ψi 0

sin∆ψi cos∆ψi 0

0 0 1


 (3.70)

=


 R̃∆i

0

0

0 0 1


 (3.71)

Again, as in Section 3.3, we assume that the constraints are independent of each other and
that the observation likelihood can be modeled using a Gaussian probability density function.
Additionally, by omitting the time indext for better readability theχ2

ij(x) error of the constraint
〈i, j〉 is

χ2
ij(x) = rij(x)

TΩijrij(x) (3.72)

= eij(x)
TΩijeij(x) (3.73)

Eq. (3.68)
=

(
RT
i

j∑

k=i+1

xk − δij

)T

Ωij

(
RT
i

j∑

k=i+1

xk − δij

)
. (3.74)
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To derive the gradient of theχ2
ij(x) error,

∂χ2
ij(x)

∂x
∝ −Jij(x)Ωijrij(x), (3.75)

that is part of the update term∆xij in Equation (3.58), we need to calculate the JacobianJij(x)
of eij(x). Observe thatδij is constant andRT

i is not a function of the variablesxi+1:k but of the
angles∆ψ1:i of x1:i, sinceRi = R∆1:∆i. The JacobianJij(x) is therefore:

Jij(x) =
∂eij(x)

∂x
(3.76)

=
∂
(
RT
i

∑j
k=i+1 xk − δij

)

∂x
(3.77)

=
∂
(
RT
i

∑j
k=i+1 xk

)

∂x
(3.78)

=


A1 · · ·Ai︸ ︷︷ ︸

1,...,i

RT
i · · ·R

T
i︸ ︷︷ ︸

i+1,...,j

0 · · ·0︸ ︷︷ ︸
j+1,...,n


 . (3.79)

Here,0 is the3× 3 matrix containing only zero elements, i.e.,

0 =




0 0 0

0 0 0

0 0 0


 , and (3.80)

As, with s ∈ (1, . . . , i), is expanded to

As =
∂RT

i

∑j
k=i+1 xk

∂xs
(3.81)

=
∂(
∏i

k=1R∆k)
T
∑j

k=i+1 xk

∂xs
(3.82)

=
∂
∏1

k=iR
T
∆k

∑j
k=i+1 xk

∂xs
(3.83)

=




0 0
R̃T

∆i:∆s+1R̃∆sR̃
T
∆s−1:∆1

∑j
k=i+1(∆xk,∆yk)

T

0 0

0 0 0


 . (3.84)

Note that theAn only depend on the∆x and∆y component of thexk and the contribution of
theAn is therefore proportional to translational partpj − pi. Assuming this translational part
to be small, we can neglect the contribution of theAn and approximate the Jacobian with

Jij(x) ≃


0 · · ·0︸ ︷︷ ︸

0,...,i

RT
i · · ·R

T
i︸ ︷︷ ︸

i+1,...,j

0 · · ·0︸ ︷︷ ︸
j+1,...,n


 (3.85)

= RT
i


0 · · ·0︸ ︷︷ ︸

0,...,i

I · · · I︸ ︷︷ ︸
i+1,...,j

0 · · ·0︸ ︷︷ ︸
j+1,...,n


 (3.86)

= RT
i

j∑

k=i+1

Ik (3.87)
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with Ik defined as

Ik =


0 , . . . ,0︸ ︷︷ ︸

0,...,k−1

, I︸︷︷︸
k

,0 , . . . ,0︸ ︷︷ ︸
k+1,...,n


 , and (3.88)

I =




1 0 0

0 1 0

0 0 1


 . (3.89)

We can now see what the effects of choosing such a parametrization are. First of all, a constraint
〈i, j〉 will keep the nodei fixed and distribute the residual along the variablesxi+1, . . . ,xj
only. This update, however, will also immediately propagate to all nodesk > j because of the
special parametrization (see Equation (3.59)ff). Second,we also see that the Jacobian belonging
to a constraint takes a very simple form (see Equation (3.87)) which allows us to calculate
JTij (x

t)Ωijrij(x
t) quite fast.

As stated in the beginning of this section, the update rule ofPPO is

xt+1 = xt + λ(τ)Kij(x
τ )JTij (x

t)Ωijrij(x
t), (3.90)

thus it remains open how the preconditioning matrixKij(x
τ ) and the learning rateλ(τ) are

chosen which will be discussed in the remainder of this section.
To ensure convergence of the algorithm, the authors proposeto use aλ(τ) that decays in each
iterationτ and fulfills the requirements as stated in Equation (3.56) with

λ(τ + 1) =
λ(τ)

λ(τ) + 1
, for τ > 1, and (3.91)

λ(1) = 1/3, which results in (3.92)

λ(τ) = 1/(τ + 2), for τ ≥ 1. (3.93)

The preconditioning matrixKij(x
τ ) in Equation (3.90) is an approximation to the precondition-

ing matrix of Gauss-Newton which is (see Section 3.3)

H−1(xt)
Eq. (3.49)
∝


 ∑

〈i,j〉∈C

JTij (x
t)ΩijJij(x

t)




−1

. (3.94)

Looking closely at the equation above, we see that the matrixH is of size3n × 3n, givenx =
(x1, . . . ,xn) and inverting such a matrix is computationally expensive ifit is not very sparse.
Therefore we calculate the Hessian only at the beginning of an iterationτ and approximate its
inverse by inverting the diagonal elements ofH(xτ ) only. This results in

H−1(xτ ) ≈


diag


 ∑

〈i,j〉∈C

JTij (x
τ )ΩijJij(x

τ )






−1

. (3.95)

Observe, thatH−1(xτ ) is now a matrix of size3n × 3n having the only non-zero elements at
the diagonal. We can further divide the diagonal inton blocksD−1

k , k = 1, . . . , n, each of size
3× 3 (also with the only non-zero elements on the diagonal) such that

H−1(xτ ) =




D−1
1 0 · · · 0

0 D−1
2

. . .
...

...
. . .

. . . 0

0 · · · 0 D−1
n



, with 0 :=




0 0 0

0 0 0

0 0 0


 . (3.96)
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Since applying a constraint〈i, j〉 yields in an update of the variablesxi+1 to xj only the corre-
sponding preconditioning matrixKij(x

τ ) contains a total of(j − i) matrices on the diagonal,
each of size3 × 3, and all other entries being zero. In more detail,Kij(x

τ ) is of the following
form:

Kij(x
τ ) =




0

. . .
. . .

... . .
.

0 · · · 0 · · ·

W ij
i+1

. .
. ...

. . .

. . .

. . .
... . .

.
W ij
j

· · · 0 · · · 0

. .
. ...

. . .
. . .

0




. (3.97)

Here, theW ij
k of Kij(x

τ ), with k = i+ 1, . . . , j, are computed using Equation (3.96) as

W ij
k = (j − i)

[
j∑

m=i+1

D−1
m

]−1

D−1
k . (3.98)

Intuitively, the individualW ij
k weight the residual of the constraint〈i, j〉 according to the ra-

tio between the uncertainty of the current nodexk with respect to all other nodes involved in
this update, scaled by the affected number of nodes,(j − i). Here, the update of a nodek
will be proportional to the uncertainty affecting it. Consider the example where all constraints
connected to nodek have a low uncertainty (and therefore large numbers in the information
matrix). According to Equation (3.95) the correspondingD−1

k will contain small values only.
Consider further a constraint〈i, j〉 updating the nodesi+1 to j, with i+1 ≤ k ≤ j, whereas all
the other nodesxm, with, m = i + 1, . . . , j,m 6= k are connected to constraints (except〈i, j〉)
having a high uncertainty and therefore low values in the information matrix. In this case, the
correspondingD−1

m will be made up of high values. Thus, the corresponding weight W ij
k will

be small. In other words, nodes having a high uncertainty (expressed by connected constraints
having a high uncertainty) will be affected by a stronger variation than nodes having a small
uncertainty. It is noteworthy, that in the final step of this algorithm each weightW ij

k is clamped
to a maximum preventing the update from overshooting.

To summarize, PPO is an algorithm for 2D robotic mapping which is a combination of an
approximation to Gauss-Newton and stochastic gradient descent. It uses a novel parametrization
in the context of graph optimization based on pose differences that results in an update rule
allowing us to compute a single iteration quite fast. This parametrization also significantly
reduces the amount of iterations needed for convergence [114] since an update of a nodei will
immediately propagate to all subsequent nodesj, with j > i. Unfortunately, this algorithm still
bears some drawbacks.

• PPO assumes that the nodes are ordered ascending in time. Therefore, PPO, cannot deal
with arbitrarily connected networks which can be present inpractice. Such a network
could be for example constructed by two robots exploring an environment while sharing
the same map observing each other once in a while.
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• Furthermore, PPO assumes that the nodes are ordered according to poses along the trajec-
tory. This results in adding nodes to the graph whenever the robot travels for an extended
time in the same region resulting in an algorithm where the computational complexity
is proportional to the time spent in the environment rather to the space. The reason for
this is that the ordering of the nodes prevents PPO from merging multiple nodes into one.
This, however, is a necessary precondition to perform life-long map learning.

• When updating a constraint〈i, j〉 between the nodesi andj, the current parametrization
requires to change(j − i) nodes. As a result, each node is likely to be updated by sev-
eral constraints, which leads to a high interaction betweenconstraints and will typically
reduce the convergence speed of this approach. For example,a nodek will be updated
by all constraints〈i′, j′〉 with i′ ≤ k ≤ j′, which is common in practice when a robot
re-traverses already known areas, i.e., performs loop closures. Note that by using an in-
telligent look-up structure [114], this operation can be carried out inO(log n), wheren is
the number of nodes in the graph. Therefore, this is a problemof convergence speed of
this algorithm and not a computational problem.

• The current parametrization is only valid for 2D robotic mapping, i.e.,p = (x, y, ψ),
although an extension towards(x, y, z, ψ) is straightforward, this algorithm cannot deal
with full 3D rotations.

All these points are addressed by our novel tree-based network optimization algorithm for the
2D and 3D case presented in Chapter 4. We present a novel parametrization for graph-based
error minimization. We will demonstrate that our algorithmyields accurate results for robotic
mapping but needs substantially fewer iterations than the approach presented here, while the
computational burden for a single iteration is comparable small. We will furthermore demon-
strate, that our update rule allows us to deal with arbitrarynetworks and significantly reduces
the oscillations of a node during an iteration. We will describe our node reduction technique
resulting in an algorithm not depending on the length of the trajectory but on the area explored
by the robot. Finally, we present an extension towards three-dimensional graph optimization
and demonstrate the robustness in several simulated and real-world experiments.



Chapter 4

Tree-Based Graph Optimization

We present an extension to path parametrized optimization (PPO)
by applying a novel parametrization of the nodes that significantly
improves the performance in 2D. We present a further extension
that enables us to deal with 3D data. Subsequently, we present a
technique for node reduction yielding an approach whose compu-
tational time is depending on the size of the explored environment
rather than on the time spent in it. We evaluate our approach on
large simulated and real world data sets and demonstrate that we
outperform current state-of-the-art techniques.

In the previous chapter we reviewed the basic principles about graph based optimization within
the context of robotic mapping and saw that we can reformulate an graph-based optimization
problem in terms of least squares error minimization. Subsequently, we described a technique
commonly used within the robotics community, namely preconditioned gradient descent and
focused on Gauss-Newton. Furthermore we described stochastic gradient descent, an approach
containing orthogonal elements with respect to preconditioned gradient descend. We presented
the path-parametrized optimization algorithm (PPO) whichis a combination of both techniques.
This approach is a fast and robust algorithm for 2D robotic mapping and belongs to the current
state-of-the-art. However, the specific design of this algorithm still bears some disadvantages
that result in a suboptimal behavior. This includes an increased number of iterations needed
for convergence due to the parametrization as well as its computational dependence on the time
a robot traveled in an environment rather than on the environment size. Finally, the algorithm
works only on a configuration space containing at most one rotational axis, i.e., the yaw. In this
chapter we will present our tree-based network optimization algorithm, an improved version
of the PPO approach for both the 2D case and the full 3D case including 3D rotations. We
demonstrate that our algorithm needs substantially fewer iterations until convergence for the 2D
case (without any loss in accuracy). Furthermore, we show that our three-dimensional version
can even optimize large networks in full 3D where many state-of-the-art techniques cannot be
applied to.

This chapter is structured as follows. We will first introduce our novel tree-based parametriza-
tion in Section 4.1 and derive the corresponding update rulefor optimization in 2D. Subse-
quently, we present our extension towards 3D optimization in Section 4.3 and analyze the rota-
tional error distribution in Section 4.4. Furthermore, we present a technique for merging nodes
and thus reducing the number of variables in the graph in Section 4.5 leading to an optimiza-
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tion algorithm whose computational time is depending on thesize of the explored environment
rather than on the time spent in it. In Sections 4.6 and 4.7 we evaluate our approach on big simu-
lated data sets as well as on real world data sets, both in 2D and 3D and compare our tree-based
network optimizer to current state-of-the-art approaches, including a detailed comparison to the
incremental approach (PPO). Finally, we discuss the relation of our algorithm to the literature
in Section 4.8 and conclude in Section 4.9.

4.1 Tree Parametrization and 2D Graph Optimization

One of the key contributions of PPO is the novel parametrization of the configuration space
in terms of pose differences. We saw that this resulted in a simple update rule that is easy
to implement. In this section we propose a different parametrization that results in a slightly
different update rule but is still compact and easy to implement. However, it reduces the number
of times a node will be updated by different constraints, i.e., the correlation between different
constraints is even lower than in the case of PPO. Especially, when closing a loop, we will see
that our parametrization updates a smaller set of variablesresulting in a faster convergence of
the algorithm (to a correct solution). As in the case of PPO our update rule is of the form

xt+1 = xt + λ(τ)Kij(x
τ )JTij (x

t)Ωijrij(x
t)

︸ ︷︷ ︸
∆x

t
ij

. (4.1)

Here, we assume that we update the graph according to a constraint 〈i, j〉 selected at timet
belonging to iterationτ . However, in our case we will not permute the set of constraints at each
iterationτ (as it is the case in PPO) but select the constraints in a fixed order. We will see later,
that this order is given by our tree structure and reduces thecomplexity of an iteration. For
better readability, let us first recall from the previous chapter the individual components of this
update rule:

• rij(x) is the residual which is the opposite of the error vector. Changing the configuration
of the nodes in the direction of the residualrij(x) will decrease the erroreij(x).

• Ωij represents the information matrix of the constraint〈i, j〉. Thus,Ωijrij(x) scales the
residual components according to the uncertainty of the constraint.

• Jij(x) is the Jacobian of the erroreij(x) and maps the (scaled) residual term from error
space into a variation of the nodes in configuration space.

• Kij(x
τ ) is a preconditioning matrix. It is calculated at the beginning of iterationτ for

each constraint〈i, j〉 given the actual configuration of the nodes,xτ .

• Finally,λ(τ) is a learning rate that decreases with each iteration and makes the system to
converge.

In the remainder of this section we will first introduce our tree parametrization. Subsequently
we will derive the individual components and show the differences compared to previous ap-
proaches.

Similar to PPO (see Section 3.5) we propose a parametrization based on pose differences. In
our case, however, we relax the requirement that the poses are ordered along the trajectory but
parametrize the configuration space as follows. Given the absolute posesp = (p1, . . . ,pn)

T ,
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with pi = (xi, yi, ψi)
T , the parametrizationx = (x1, . . . ,xn)

T , with xi = (∆xi,∆yi,∆ψi)
T is

obtained as:

x1 = p1 (we will call it the root node) (4.2)

xi = pi − parent(pi), for i > 1. (4.3)

Here, the parent ofpi is the predecessor with the smallest index (i.e., the “oldest” node) for
which a constraint between both nodes exists, thus

parent(pi) := pk with ∃〈i, k〉 ∧ (∀〈i, k′〉, k′ 6= k : k′ > k). (4.4)

As in previous work [116], we also assume all constraints being of the form〈i, j〉, with j > i and
that we can transform each constraint〈j, i〉 into a corresponding constraint〈i, j〉 as described in
Section 2.2. We can also easily recover the global pose representation, since for eachpi, there
exists apathP1:i connecting the root nodex1 = p1 andpi in the tree structure. Without loss of
generality, let us assume this path to beP1:i = (xi1 = x1,xi2 , . . . ,xin). We can then recover
the posepi by summing up the individual components, i.e.,

pi =
in∑

k=i1

xk. (4.5)

To get an intuition about the structure consider the two examples shown in Figure 4.1. Each
example consists of a trajectory and the corresponding treestructure given by our parametriza-
tion. Within each trajectory, black arrows indicate motionconstraints and orange arrows visual-
ize observations made about the corresponding node (i.e., loop closures). The second example
(Figure 4.1(right)) displays a typical situation that is common in practice, namely re-traversing
a loop several times. Especially in this case, the tree structure has the main advantage of keep-
ing the number of nodes involved in an update of a constraint small. We shall see later, that an
update indeed only involves the set of variables belonging to the loopin the tree structure. In
more detail, consider for example the constraint〈1, 12〉 in the left image or alternatively〈1, 9〉 in
the right image of Figure 4.1. Updating such a constraint using the incremental parametrization
as proposed in the previous chapter would result in an error distribution among all nodes in this
loop. When using our parametrization, however, updating this constraint yields in an update
including the nodes1, 2, 3, 10, 11, 12 in the first example and1, 5, 9 in the second one. Again,
updating the constraint〈1, 9〉 in the second example will only affect the nodes1, 5, 9 but leave
all other nodes unchanged. Here, we can already see that thisparametrization will have the
effect that a nodek, for which many constraints〈i, j〉, with i ≤ k ≤ j, exists, will be updated
less often through potentially counter effective constraints than in the case of the incremental
parametrization. We will demonstrate in the experimental section, that this indeed will lead to
an algorithm that needs less iterations until convergence.Note that in case no loop closures are
present, our tree structure degenerates to a linear list yielding the same parametrization as in the
case of PPO. To derive the individual components of the update rule given our parametrization
let us start with the definition of the error of a constraint〈i, j〉, which is

eij(p) = (pj ⊖ pi)− δij (4.6)

= RT
i (pj − pi)− δij (4.7)

= −rij(p). (4.8)

Recall, that there exists a pathP1:i = (xi1 , . . . ,xin) from the root node,x1 = xi1 , to each nodei
present in the network. Thus the rotation of a nodei, expressed through the homogeneous
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Figure 4.1: Two examples of a robot trajectory and the corresponding tree structures. The black arrows in the
tree indicate the constraints between the node and its parent, i.e, the correspondingxi, whereas the dashed orange
arrows visualize off-tree constraints, i.e., constraintsthat are present in the setC of the graph, but are not used in
anyxi, i = 1, . . . , n. Observe, that for each nodek, there exists a path between this node and the root nodex1 by
definition.

rotation matrixRi (see also Equation (3.69)ff in Section 3.5) is

Ri =




cosψi − sinψi 0

sinψi cosψi 0

0 0 1


 (4.9)

=
in∏

k=i1

R∆k =: R∆i1:∆in , with (4.10)

R∆k =




cos∆ψk − sin∆ψk 0

sin∆ψk cos∆ψk 0

0 0 1


 (4.11)

=


 R̃∆k

0

0

0 0 1


 (4.12)

Using our tree parametrization, the erroreij(x) is then

eij(x) = RT
i (pj − pi)− δij (4.13)

= RT
i

(
jn∑

k=j1

xk −
in∑

k=i1

xk

)
− δij (4.14)

Whereas Equation (4.14) looks more complex than in the PPO algorithm, we can also simplify
it. Consider for example the constraint〈5, 6〉 in Figure 4.1(left). To calculate the error of this
constraint, we need to calculatep6−p5. In this example we havep6 = (x1+x2+x3+x6), and
p5 = (x1+x2+x3+x4+x5) and thereforep6−p5 = x6−x5−x4. In other words, we need
to climb up the tree from nodei to the common parent node of nodei and nodej (which in the
worst case is the root node) and then traverse the tree starting from this parent node downwards
to nodej. We refer to the nodes one has to traverse on the tree of a constraint as thepath of
that constraint. For example,Pi:j = (x(i:j)1 , . . . ,x(i:j)n) is the path from nodei to nodej given

the constraint〈i, j〉. We can divide such a pathPi:j into an ascending partP [−]
i:j (from nodei to

the common ancestor) and into a descending partP [+]
i:j starting from the common ancestor node
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down to nodej. In the example mentioned above,P5:6 = (−x5,−x4,x6), P
[−]
5:6 = (x4,x5), and

P [+]
5:6 = (x6). Note that formallyxk ∈ P but we will also writek ∈ P, which is an abbreviation

for k : xk ∈ P in the remainder of this section. This allows us to formulatethe error of a
constraint as

eij(x) = (pj ⊖ pi)− δij (4.15)

= RT
i

(
jn∑

k=j1

xk −
in∑

k=i1

xk

)
− δij (4.16)

= RT
i




∑

k[+]∈P
[+]
i:j

xk[+] −
∑

k[−]∈P
[−]
i:j

xk[−]


− δij (4.17)

= RT
i

∑

k∈Pi:j

s(xk, i, j)xk − δij, (4.18)

and (for completeness) theχ2 error of the constraint〈i, j〉 as (see Section 3.1 for a derivation)

χ2
ij(x) = eij(x)

TΩijeij(x) (4.19)

=


RT

i

∑

k∈Pi:j

s(xk, i, j)xk − δij



T

Ωij


RT

i

∑

k∈Pi:j

s(xk, i, j)xk − δij


 . (4.20)

Here, we useds(xk, i, j) to indicate to which part the node belongs to, given the pathPi:j, i.e.,

s(xk, i, j) =

{
+1 if xk ∈ P [+]

i:j

−1 if xk ∈ P [−]
i:j

(4.21)

Given the erroreij(x) and keeping in mind thatδij is constant with respect to the configurationx

we can now derive the JacobianJij(x) with

Jij(x) =
∂eij(x)

∂x
(4.22)

=
∂
(
RT
i

∑
k∈Pi:j

s(xk, i, j)xk − δij

)

∂x
(4.23)

=
∂
(
RT
i

∑
k∈Pi:j

s(xk, i, j)xk

)

∂x
(4.24)

=

∂


RT

i


 ∑

k[+]∈P
[+]
i:j

xk[+] −
∑

k[−]∈P
[−]
i:j

xk[−]






∂x
. (4.25)

LetP1:p(i,j) be the path from the root nodex1 to the last (defined by their index) common parent
of nodei andj, p(i, j). The JacobianJij(x) is then build of four types of derivatives. The
derivative of the erroreij(x) with respect tox ∈ P1:p(i,j), x ∈ P [−]

i:j , x ∈ P [+]
i:j , and finally all
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remainingx. Thus, the Jacobian is of the form

Jij(x) =

∂


RT

i


 ∑

k[+]∈P
[+]
i:j

xk[+] −
∑

k[−]∈P
[−]
i:j

xk[−]






∂x
(4.26)

=


A1 · · ·An︸ ︷︷ ︸

1,...,p(i,j)

RT
k · · ·R

T
k︸ ︷︷ ︸

p(i,j)+1,...,j

0 · · · 0︸ ︷︷ ︸
(j+1),...,n


 with 0 =




0 0 0

0 0 0

0 0 0


 . (4.27)

Here, the individualRT
k belonging to the JacobianJij(x) are of the form

RT
k =





−RT
i iff k ∈ P [−]

i:j

RT
i iff k ∈ P [+]

i:j

0 else.

(4.28)

TheAs, s ∈ 1, . . . , p(i, j) can be further expressed as

As =
∂RT

i

∑
k∈Pi:j

s(xk, i, j)xk

∂xs
(4.29)

Eq. (4.10)
=

∂(
∏in

k=i1
R∆k)

T
∑

k∈Pi:j
s(xk, i, j)xk

∂xs
(4.30)

=
∂
∏i1

k=in
RT

∆k

∑
k∈Pi:j

s(xk, i, j)xk

∂xs
(4.31)

=




0 0
R̃T

∆in:∆s+1R̃∆sR̃
T
∆s−1:∆i1

∑
k∈Pi:j

s(xk, i, j)(∆xk,∆yk)
T

0 0

0 0 0


 . (4.32)

Again, we see that the contribution of theAs is proportional to the translational distance between
node i and nodej. Assuming this distance to be limited, we can neglect the effect of the
individualAs. Given the definition ofIk (see also Equation (3.85)ff), namely

Ik =


0 , . . . ,0︸ ︷︷ ︸

0,...,k−1

, I︸︷︷︸
k

,0 , . . . ,0︸ ︷︷ ︸
k+1,...,n


 , with I =




1 0 0

0 1 0

0 0 1


 , (4.33)

we can finally approximate the JacobianJij(x) through

Jij(x) ≈ RT
i




∑

k[+]∈P
[+]
i:j

Ik[+] −
∑

k[−]∈P
[−]
i:j

Ik[−]


 . (4.34)

In other words, the Jacobian is built of positive and negative rotational blocks,RT
i , depending

whether the corresponding node belongs to the ascending or the descending part of the path
Pi:j. In this case, the common parent node, p(i, j), is kept fixed and the error is distributed
along the pathPi:j. Recalling the update formula from the beginning of this section,

xt+1 = xt + λ(τ)Kij(x
τ )JTij (x

t)Ωijrij(x
t)

︸ ︷︷ ︸
∆x

t
ij

, (4.35)
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we now need to address the remaining components, namely the preconditioning matrix,Kij(x
τ ),

the learning rateλ(τ) and the order of the constraints in each iterationτ . As in the case of the
incremental parametrization we approximate the inverse ofthe Hessian,H(xτ )−1, at the begin-
ning of iterationτ through

H−1(xτ ) ≈


diag


 ∑

〈i,j〉∈C

JTij (x
τ )ΩijJij(x

τ )





−1

. (4.36)

Again, observe thatH−1(xτ ) is now a matrix of size3n×3n having the only non-zero elements
at the diagonal. Thus we divide the diagonal inton blocksD−1

k , k = 1, . . . , n, each of size3×3
(also containing non-zero values on the diagonal only) suchthat

H−1(xτ ) =




D−1
1 0 · · · 0

0 D−1
2

. . .
...

...
. . .

. . . 0

0 · · · 0 D−1
n



, with 0 :=




0 0 0

0 0 0

0 0 0


 . (4.37)

Updating the graph given the constraint〈i, j〉 leads to a variation ofsomevariablesxs, with
xs ∈ Pi:j. Thus the preconditioning matrixKij(x

τ ) contains a total of|Pi:j| matrices on the
diagonal, with|Pi:j| being the number of element of the pathPi:j, which we will call thelength
of the corresponding path. These matrices are each of size3 × 3, and all other entries in the
matrix are zero. In more detail,Kij(x

τ ) is of the following form:

Kij(x
τ ) =




0

. . .
. . .

... . .
.

0 · · · 0 · · ·

W ij
p(i,j)+1

. .
. ...

. . .

. . .

. . .
... . .

.
W ij
j

· · · 0 · · · 0

. .
. ...

. . .
. . .

0




, (4.38)

where the individualW ij
k ofKij(x

τ ) with k ∈ [p(i, j)+1, . . . , j] are the onlypossiblenon-zero
blocks. These are computed using Equation (4.37) as

W ij
k =





s(xk, i, j)|Pi:j|

[
∑

m∈Pi:j

D−1
m

]−1

D−1
k if k ∈ Pi:j

0 otherwise.

(4.39)

Note that our approach updates|Pi:j| variables rather than(j − i) as in the case of PPO (see
Equation (3.98)) since in PPO, all of theW ij

k are non-zero. Again, s(xk, i, j) is defined as

s(xk, i, j) =

{
+1 if xk ∈ P [+]

i:j

−1 if xk ∈ P [−]
i:j .

(4.40)
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As proposed in previous work [114], we clamp the individualW k
ij to a maximum (see Sec-

tion 4.3) preventing an update from overshooting. Furthermore we choose a learning rateλ(τ)
(see Equation (3.91)ff) as

λ(τ) = 1/(τ + 2), for τ ≥ 1. (4.41)

Now that we have defined all components of the update rule (seeEquation (4.35)) it remains
open how to order the set of constraints,C, in each iterationτ . In general, we could also permute
the setC at the beginning of each iteration but our incremental tree provides us with a natural
order which results in a reduced complexity. To understand why this is the case let us again
have a look at the Jacobian, which is

Jij(x)
Eq. (4.34)
= RT

i




∑

k[+]∈P
[+]
i:j

Ik[+] −
∑

k[−]∈P
[−]
i:j

Ik[−]


 . (4.42)

Thus we have to calculateRi =
∏in

k=i1
R∆k in order to update the variables, given the con-

straint 〈i, j〉 and the pathP1:i = (xi1 , . . . ,xin). Let the level of a node be the distance in
the tree between the node itself and the root node (i.e., the depth in the tree), which implies
levelOf(xi) ≤ i. Let furthermorexij be the node in the pathPi:j with the smallest level. The
levelof the constraint〈i, j〉 is then defined as the level ofxij. The common parent of the nodes
i andj, p(i, j), is kept fixed and only nodes which have a bigger depth than thecommon parent
are changed. In other words, our parametrization implies that updating a constraint will never
change the configuration of a node with level smaller than thelevel of the constraint. Based
on this knowledge, we can sort the constraints according to the level and process them in that
order. As a result, it is sufficient to access the parent ofxij to computeRi since all other
nodes having a smaller level thanxij have already been corrected in this iteration. Otherwise,
and it is the case in the previous approach, we would need to re-calculateRi each time from
scratch resulting in a higher complexity per iteration. Figure 4.2 illustrates such a situation.
Each image consists of the trajectory (top) and the tree (bottom). Figure 4.2(a) shows the initial
set up of the tree and the remaining images (b-f) visualize the processing order of the con-
straints, emphasized by the orange dashed arrows. Here, theprocessing order of the constraints
is 〈8, 9〉, 〈7, 8〉, 〈11, 12〉, 〈6, 7〉, and〈5, 6〉. Note that we only provided the order of the off-tree
constraints (i.e., of loops in the trajectory) and omitted to include constraints like〈1, 2〉 for
simplicity. In Figure 4.2(b-f), the nodes of the pathPi:j and the corresponding common parent
(which does not belong to the path) are shaded in the tree (bottom part). Within the trajectory
(top part) the very same nodes are highlighted for better visualization. Optimizing such a net-
work using the incremental parametrization rather than ours would lead to many updates in the
nodes as will be shown in the experimental section of this chapter (Section 4.6). Consider for
example the loop1, 2, . . . , 9. Whereas in previous work, updating the constraint〈1, 9〉 results
in a variation of the nodes2, . . . , 9, our parametrization leads to a variation of the nodes8 and
9 only.

The differences between the individual components of our incremental tree parametriza-
tion approach and the incremental path parametrization approach (PPO) (see Section 3.5) are
summarized in Table 4.1. Here we can see, that our algorithm has a comparable update rule
as well (and thus a comparable complexity per iteration). However, we will show in the next
section, that our incremental tree parametrization leads to an algorithm needing substantially
fewer iterations to converge than the previous approach based on the incremental parametriza-
tion only. Up to now, we have provided the update rule for the 2D case (i.e.,pi = (xi, yi, ψi)

T )
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Figure 4.2: This example visualizes the processing order of the constraints. Each image (a-f) shows the trajectory
(top part) and the tree (bottom part). The initial situationis shown in (a), whereas the images (b-f) show the
processing of the constraints〈8, 9〉, 〈7, 8〉, 〈11, 12〉, 〈6, 7〉, and〈5, 6〉. Here, the nodes affected by the constraint,
including the common parent, are shaded within the tree and highlighted in the trajectory for better visualization.
Note that this images show the processing of the off-tree constraints (dashed orange arrows) only but in general
the tree-constraints, like〈1, 2〉 are also processed.

only. Although this approach can be extended towards 2.5D, i.e., pi = (xi, yi, zi, ψi)
T in a

straightforward manner, the current form of the optimization algorithm can not deal with arbi-
trary 3D rotations. After providing an analysis of our current algorithm in the next section, we
will therefore describe our update rule for the three-dimensional case in Section 4.3.

4.2 Analysis of the Algorithm

This section is designed to give a more detailed understanding on the effect of the incremental
tree parametrization with respect to PPO as described in Section 3.5. We generated a data set
by simulating a robot moving in a grid world. A schematic viewof the trajectory is depicted
in Figure 4.3(a). The robot starts at node1 and subsequently moves to nodes2, 3, . . . , 23.
However, a path from one node to another in this description consists of total6 nodes in our
simulated data, leading to a network containing a total of23 · 6 = 138 nodes (poses). The
robot observes all other locations (nodes) in its local vicinity which results in500 constraints.
Both poses and edges are corrupted by a zero mean Gaussian noise having a standard deviation
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PPO Our approach
xt+1 = xt +∆xtij, for a constraint〈i, j〉 ∈ C

∆xtij = λ(τ)Kij(x
τ )JTij (x

t)Ωijrij(x
t), for iterationτ

x1 = p1
x

xi = pi − pi−1, i > 1 xi = pi − parent(pi), i > 1

Pi:j = (xi, . . . ,xj) = (x(i:j)1 , . . . ,x(i:j)|Pi:j |
) = P [+]

i:j ∪ P [−]
i:j

Jij(x) ≈ RT
i

j∑
k=i+1

Ik ≈ RT
i


 ∑

k[+]∈P
[+]
i:j

Ik[+] −
∑

k[−]∈P
[−]
i:j

Ik[−]




Kij build of diagonal blocksW k
ij

W k
ij




(j − i)

[
j∑

m=i+1

D−1
m

]−1

D−1
k , k ∈ Pi:j

0 , otherwise





|Pi:j|

[
∑

m∈Pi:j

D−1
m

]−1

D−1
k , k ∈ P [+]

i:j

−|Pi:j|

[
∑

m∈Pi:j

D−1
m

]−1

D−1
k , k ∈ P [−]

i:j

0 , otherwise

λ(τ) = 1/λ(τ + 2), τ > 1

C random permutation in each iterationτ ordered wrt. tree parametrization

Table 4.1: Comparison of the optimization algorithms and their individual components. The individual compo-
nents of PPO [116] (see previous chapter) are summarized in the left column whereas the right column states the
components given our tree parametrization, respectively.

of 0.1 along all axes. The network obtained using these parametersis shown in Figure 4.3(b).
The evolution of the network after iteration1, 5, 10, and30 for both approaches is shown

in Figure 4.5. Comparing the result of PPO (left column) to ourincremental tree approach
(right column) we see that our approach leads visually to a more consistent graph already after
five iterations compared to30 iterations in the case of PPO. To quantitatively evaluate both
approaches we calculated theχ2 error per constraint. This number is obtained by dividing the
overallχ2 error (see Equation (3.17)) by the number of constraints,|C|, and reflects the average
error in the network. Figure 4.4 depicts theχ2 error per constraint for PPO (dashed line) as well
as ours (solid line) for the first1000 iterations.

As stated in the beginning of this chapter, our incremental tree optimization algorithm needs
fewer iterations until convergence (see also Figure 4.4). Again, the reason for this is that our
approach typically updates fewer (but sufficiently many) nodes when distributing an error along
a loop. This indeed has the effect that constraints having contrary effects on nodes will lead
to less oscillations in the graph. To emphasize this let us focus on two nodes in Figure 4.3,
namely node3 and node22. These nodes have been selected due to their different levelof
connectivity, i.e., the number of connected edges. The evolution of the nodes in each axis is
shown in Figure 4.6 (top rows) and a scaled version of four intermediate iterations is shown in
the bottom row of the same figure. Note that thex−axes of the plots show the number of steps
(i.e., change of the network after updating one constraint)rather than iterations. Here, each
iteration is equal to500 steps, since|C| = 500 and thus the four iterations are equal to2000
steps. Observe that already node3, although having the smallest connectivity in the network,
is affected by a high variation in the case of PPO whereas thisvariation is significantly smaller
using our approach. The oscillations and the difference in variation becomes even more severe
when comparing nodes having a higher connectivity as indicated by node22. Our incremental
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Figure 4.3: Schematic view of the trajectory (a) and the network (b) obtained by corrupting both the poses as well
as the edges by zero mean Gaussian noise. The parameters of the Gaussian noise are found in the text.
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Figure 4.4: χ2-error per constraint for the data set depicted in Figure 4.3given our incremental tree approach
(solid black line) and the path parametrized approach, PPO (dashed gray line).

tree structure allows us to decompose the optimization problem into a set of weakly interacting
problems, namely each sub-graph in the tree structure. Thus, a node is less likely to be updated
by other constraints. A good measure for evaluating the interaction between the constraints is
the average path lengthl of updated nodes per constraint. For example, a network witha large
value forl has typically a higher number of interacting constraints compared to networks with
a low values ofl. In all experiments, where we randomly generated graphs with a total number
of constraints between around4, 000 and2 millions, our approach had a value forl between3
and7 (ignoring constraints between successor variables). In contrast to that, this value varies
between600 and17, 000 in PPO on the same networks. This indeed reduces the convergence
speed of PPO but does not introduce a higher complexity.
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PPO Our approach
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Figure 4.5: Evolution of the network depicted in Figure 4.3 given the incremental approach (left column) and ours
(right column) for the iterations1, 5, 10, and30. As can be seen, our approach leads visually to a more consistent
network after5 iterations than the incremental approach after30 iterations.
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Figure 4.6: Evolution of typical nodes in a small data set. The first threerows depict the variation of the node3
and22 for all axis (i.e.,x, y, ψ) whereas the bottom row depicts a scaled version of thex-axis over the period of
2000 steps, equal to four iterations. The outcome for PPO is shownusing gray dashed lines, whereas the result of
our incremental tree approach is visualized in solid black.
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a) b) c)

Figure 4.7: A small example that illustrates the problem of distributing the error in 3D. The input data that was
obtained by moving a simulated robot over a hexagon twice with small Gaussian noise is shown in (a). The middle
image (b) show the result obtained if the non-commutativityof the rotation angles is ignored, i.e., this image shows
the result if applying the approach presented in the previous chapter. The result of our approach presented in this
section is shown in (c) which is very close to the ground truth.

4.3 Distributing the Error in 3D

The reader might pose the question whether it is possible to apply the update rule of the previous
section to full 3D rotations. Unfortunately, this is not possible. To understand the effect of
this statement, consider the error distribution for the 2D case first. Here, we can distribute a
residualr2D = (rx, ry, rψ)

T along a chain ofn nodes by changing the pose of thei-th node
by (rx/n, ry/n, rψ/n)

T , given the incremental (tree) parametrization. In the three-dimensional
space, however, such a technique is not applicable due to thenon-commutativity of the three
rotations as visualized in Figure 4.7. In other words, comparing the 2D and the 3D case we
have

R2D(ψ) =
n∏

i=1

R2D(
ψ

n
), but in general (4.43)

R3D(φ, θ, ψ) 6=
n∏

i=1

R3D(
φ

n
,
θ

n
,
ψ

n
), (4.44)

whereR2D andR3D are the rotation matrices for the two-dimensional and three-dimensional
case. Here, the rotations along thex, y, andz axis areroll (φ), pitch (θ), andyaw(ψ).

Given the notation of motion composition,⊕, and its inverse,⊖, as defined by Smith and
Cheeseman [138] and Lu and Milios [100] (see Section 2.2) we define the incremental tree
parametrization for the full 3D case (i.e.,pi = (xi, yi, zi, φi, θi, ψi)

T as follows. The configura-
tion spacex = (x1, . . . ,xn)

T with xi = (∆xi,∆yi,∆zi,∆φi,∆θi,∆ψi)
T is calculated similar

to the 2D case (see previous section) with:

x1 = p1 (the root node) (4.45)

xi = pi ⊖ parent(pi), for i > 1. (4.46)

Similarly, the residual of a constraint〈i, j〉 is

rij(p) = (pi ⊕ δij)⊖ pj. (4.47)

For simplicity of notation, we will refer to the homogeneoustransformation matrix of the vector
xi asXi. This matrix of size4 × 4 is build of a rotational componentR∆i and a translational
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componentt∆i with

Xi =

(
R∆i t∆i

0 1

)
, 0 =




0

0

0



T

, t∆i =




∆xi
∆yi
∆zi


 , andX−1

i =

(
RT

∆i −RT
∆it∆i

0 1

)
.

Using c(α), s(α) short forcosα andsinα respectively the rotation matrix is calculated as

R∆i =




c(∆ψi) −s(∆ψi) 0

s(∆ψi) c(∆ψi) 0

0 0 1






c(∆θi) 0 s(∆θi)
0 1 0

−s(∆θi) 0 c(∆θi)






1 0 0

0 c(∆φi) −s(∆φi)
0 s(∆φi) c(∆φi)


 .

Similarly, we refer to the homogeneous transformation matrix of a vectorpi asPi, and of the
observationδij as∆ij. Accordingly, we can compute the residualrij(x) in the reference frame
of nodej (see Equation (4.47)) as

rij(x) = P−1
j (Pi∆ij) (4.48)

=




∏

k[+]∈P
[+]
ij

Xk[+]




−1


∏

k[−]∈P
[−]
ij

Xk[−]


∆ij . (4.49)

At this point we can directly compute the Jacobian from the residual and apply Equation (4.35)
to update the network. Although the resulting Jacobian has exactly |Pi:j| non zero blocks it does
not have the simple form as the one in the previous section andcan hardly be calculated man-
ually. Even more, updating the network using this Jacobian would lead to a poor performance
of the algorithm in case of large optimization problems. To understand this behavior, recall that
the goal of the update rule is to iteratively reduce the (χ2)-error introduced by a constraint. In
Equation (4.35), the termJijΩij maps the residual into a variation of the configuration space, x.
This mapping, however, is alinear function. As illustrated by Frese and Hirzinger [55], the er-
ror might increase when applying such a linear function in case of non-linear error surfaces. In
the three-dimensional space, the three rotational components, roll,φ, pitch,θ, and yaw ,ψ, often
lead to highly non-linear error surfaces. Therefore it is problematic to apply such an approach
as well as similar minimization techniques directly to large mapping problems, especially in
combination with a high noise in the observations. Furthermore, this also leads to a poor dis-
tribution of the error along the nodes, since the Jacobian isalso used for approximating the
Hessian, which in turn provides us with a distribution of theerror along the nodes according to
their uncertainty.

In our approach, we therefore choose a modified update rule. We apply anon-linearfunction
to map the residual into a variation in the parameter space which is presented in the following.
As in the linear case, the goal of this function is to compute atransformation of the nodes along
the pathPi:j (of the tree) such that the error introduced by the corresponding constraint〈i, j〉
is reduced. Intuitively, we decouple the rotation and the translation during optimization leading
to an two step update per iteration. First, we keep the translational part fixed and update the
network given the rotational error only, then we update the translational part, given the corrected
rotations. In the latter case, the rotational part is independent ofx (since it is kept fixed) and
thus the corresponding Jacobian maintains its simple form similar to Equation (4.42).

To this end, we consider without loss of generality the origin ouf our reference system to be
the originpi of the pathPi:j = (x(i:j)1 , . . . ,x(i:j)n). Thus, the orientation ofpj in the reference
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system ofpi can be computed by multiplying the rotational matrices along the pathPi:j. For
better readability, we refer to this matrices asR∆1 , . . . , R∆n

. Note that all rotational matrices
of the formR∆k

indicate incremental rotations whereas we will omit the index∆ in the case of
absolute values. Using this notation the orientation ofpj with respect to the reference system
of pi is

R∆1:∆n
= R∆1R∆2 · · ·R∆n

, (4.50)

with n being the length of the path, i.e.,n = |Pi:j|. In case of 3D rotations we need to describe
the errorB as a set of increments that can be applied as intermediate rotations. In other words,
we need to determine a set of increments for the intermediaterotationsR∆1 , . . . , R∆n

of the
chain so that the orientation of the last node (here nodej) isR∆1:∆n

B, i.e., we seek a set of new
rotation matricesR′

∆1
, . . . , R′

∆n
with

R∆1:∆n
B =

n∏

k=1

R′
∆k
. (4.51)

To calculate the desired rotation matrices in the local reference frame ofpi, we first have to
transform the errorB into the global reference frame, yieldingQ with

Q = RnBR
T
n , where (4.52)

Rn denotes the rotation of nodex(i:j)n in the global reference frame. Now we can decompose
the errorQ into a set of incremental rotations

Q = Q∆1:∆n
:= Q∆1Q∆2 · · ·Q∆n

(4.53)

by using spherical linear interpolation (slerp) [135] for the individualQk. Here, given a param-
eterw ∈ [0, 1], spherical linear interpolation is defined as slerp(Q,w) with slerp(Q, 0) = I and
slerp(Q, 1) = Q (see also Section 2.3). This allows us to calculate the incremental rotations as

Q∆1 = slerp(Q,wij1 ), and (4.54)

Q∆k
=

[
slerp(Q,wijk−1)

]T
slerp(Q,wijk ), for k > 1 (4.55)

This ensures a rotational error distribution, since

Q∆1:∆2 = Q∆1Q∆2 (4.56)

= slerp(Q,wij1 )
[
slerp(Q,wij1 )

]T
slerp(Q,wij2 ) (4.57)

= slerp(Q,wij2 ) (4.58)

(4.59)

and thus it follows by induction that

Q∆1:∆n
= slerp(Q,wijn ). (4.60)

Now, given the incremental rotational error terms in the global reference frame we need to
transform them into the local reference frame with the origin in pi. We therefore first compute
the resulting orientation in the global reference frame

R′
k = Q∆1:∆k

Rk (4.61)
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with Rk being the rotation of nodex(i:j)k in the global reference. Now, we can finally compute
the desiredR′

∆k
(in the local reference frame) by

R′
∆k

=
[
R′

parent(k)

]T
R′
k. (4.62)

Note that in the equation above we implicitly use

R′
parent(k) = Rparent(k), if parent(k) /∈ Pi:j . (4.63)

Although we can now calculate the intermediate rotations,R′
∆k

, we left open how to obtain
the correspondingwijk , given the constraint〈i, j〉. Since we do not want to overshoot when
updating a constraint, i.e., the resulting rotation shouldnot exceed the errorB, we incorporate
the learning rate and the path length when computing the valueswijk similar to theW ij

k in the
2D case and clamp the resulting value to a maximum. In more detail, we compute thewijk with
wijk ∈ [0, 1] as

wijk = min(1, λ|Pi:j|)


 ∑

m∈Pi:j

d−1
m




−1 
 ∑

m∈Pi:j∧m≤k

d−1
m


 . (4.64)

Here,dm is the sum of the smallest eigenvalues of the information matricesΩim,Ωmi of all
constraints connected to nodem, thus

dm =
∑

〈i,m〉∈C

min [eigenvalues(Ωim)] +
∑

〈m,i〉∈C

min [eigenvalues(Ωmi)] . (4.65)

We found out that this approximation works well in practice for roughly spherical covariances.
Note that we can compute the eigenvalues once in the beginning and store the values in the tree.
To get a better intuition about the weightswijk , compare Equation (4.64) to Equation (4.39),
where the diagonal weight matrixW ij

k is calculated for eachk ∈ Pi:j through

W ij
k

Eq. (4.39)
= s(xk, i, j)|Pi:j|


 ∑

m∈Pi:j

D−1
m



−1

D−1
k . (4.66)

The first part on the right hand side of Equation (4.66) scalesthe weight proportional to the
path length|Pi:j| and sets the direction accordingly, given the node belongs to the ascending
or descending part of the path. This is equivalent to the firstterm in Equation (4.64). Note
that here the learning rate and the clamping is already done in one step whereas the very same
operation is decoupled from the weight calculation in the 2Dcase. Comparing both equations
in more detail, we observe that the difference lies within two points. First, the calculation of the
individual dm, Dm, and second in the rightmost part of both equations. While we calculate the
sum of thedm up to the current nodek in the first equation (Eq. (4.64)), we use the individualDk

in the 2D case only (see Equation (4.66)). Indeed, this only looks like a difference, since they
follow the same principle. The reason for the different look-a-like origins from the reference
system the weights are calculated in. In the 2D case, theWk are calculated in the relative
reference frame implicitly containing theDm,m < k. In contrary to this, thewk are calculated
in the global reference frame. Thus, the remaining difference between the weight calculation
lies within the difference betweendm andDm. First of alldm is a scalar whileDm is a matrix.
This results from the slerp where we have only one parameter.In other words, we average
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the diagonal elements ofDk into the scalardk. Recall, thatDm is approximated through the
diagonal elements of the Hessian as can be seen in Equation (4.36). In more detail, theDk are
calculated as

Dk = diag


 ∑

〈i,m〉∈C

JTimΩimJim +
∑

〈m,j〉∈C

JTmjΩmjJmj


 , (4.67)

and therefore,Dm is proportional to the uncertainty, which in turn, is proportional to the eigen-
values of the covariance matrix. Thus, we observe, that the weight calculation for our modified
update rule originates from the same principle as the weightcalculation for the 2D case.

As stated in the beginning of this section, we decouple each iteration into two steps. In
the first step we update the rotational components only as described above. Now, given the
corrected nodes (with respect to the rotation) we correct the translational part in the second
step. To this end, we consider the rotation to be fixed when correcting the translational part and
parametrize the tree as in the 2D case omitting the rotational part (see previous section), i.e. use
the vector subtraction instead of the motion composition operator⊖. Indeed, the Jacobians have
now an even simpler form, since the rotational part is constant with respect to the configurationx
and we therefore obtain

Jij(x) =
∑

k[+]∈P
[+]
i:j

Ik[+] −
∑

k[−]∈P
[−]
i:j

Ik[−] . (4.68)

Note that in Equation (4.68) the Jacobian is not approximated by the right therm of this equation
but is exactly the sum of the identity matrices, which is not the case in Equation (4.34). It is
noteworthy, that this allows us to randomize the order of theconstraints in each iteration, since
we do not need to calculateRi along the tree anymore.

Given the equations above one may ask, why we introduced the pure 2D optimization in the
previous section first. The reason for this is the spherical linear interpolation needed in the three-
dimensional case which is computationally expensive. Although the approach described in this
section also works for the two-dimensional case it is about five times slower than our pure 2D
version of the algorithm and we recommend the usage of the previous approach when dealing
with two-dimensional problems. Using our approach we are now able to correct networks
containing full 3D rotations. However, it is important thatthe angular change in the residual
is limited when updating a constraint in order to prevent a flip along a rotational axis [58] that
would lead to a sub-optimal configuration of the nodes (see for example Figure 4.8(top)). Such
an error will affect any modules depending on the outcome of this algorithm, including mapping
and path planning. We therefore first analyze our rotationalerror distribution in the next section
and subsequently present our node reduction technique in Section 4.5.

4.4 Analysis of the Rotational Residual in 3D

When distributing the rotational error along a chain of nodesi, . . . , j one may increase the
rotational value of the residual between two successive nodesk − 1 andk, denoted asrk−1,k.
For the convergence of our approach however it is inevitablethat the change of the error is
bounded. Otherwise, competing constraints could result ina flip along a rotational axis as
indicated in Figure 4.8. The top image displays the result ifthe requirement above does not
hold [58, 62]. The errors in the optimized graph results fromtwo competing constraints, i.e.,
rotation in the opposite direction, leading to a full rotation along the roll axis (i.e.,2π). The
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a)

b)

Figure 4.8: Graph obtained from a car driving multiple times through a parking lot covering three floors. Different
error distributing techniques for the rotational error result in different optimized networks. The inconsistencies in
the optimized graphs are marked by the arrows. Optimizing the network and distributing the rotational error given
our previous work [58](a) and our approach described in thissection (b). A detailed description of this experiment
can be found in Section 4.7.

bottom image of Figure 4.8 shows the result of our approach asdescribed in the previous section.
In the following, we analyze the evolution of the rotationalresidual after distributing the error
according to our approach.

A rotation can be described in manners of a rotational axis and the corresponding rotation angle.
Given a three dimensional rotation matrix,R, we will refer to the axis of rotation as axisOf(R)
and to the angle as angleOf(R). According to Barreraet al.[15], spherical linear interpolation
(slerp) returns a set of rotations along the same axis, i.e.,given a weightw ∈ [0, 1], we obtain

R′ = slerp(R,w) (4.69)

axisOf(R′) = axisOf(R) (4.70)

angleOf(R′) = w · angleOf(R). (4.71)

When distributing the rotationQ over a sequence of poses (see Equation (4.53)), we decompose
it into a sequence of incremental rotationsQ = Q∆1Q∆2 · · ·Q∆n

. Given the definition ofQ∆k
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(see Equation (4.55)), we obtain

αk = angleOf(Q∆k) (4.72)
Eq. (4.55)
= angleOf

(
[slerp(Q,wk−1)]

T slerp(Q,wk)
)

(4.73)

= angleOf(slerp(Q,wk))− angleOf(slerp(Q,wk−1)) (4.74)
Eq. (4.71)
= (wk − wk−1) · angleOf(Q). (4.75)

In the following, we show that when distributing the rotational error along a loop, theangleof
the residual angleOf(rk−1,k) between two successive posesk − 1 andk does not increase more
than |αk|. According to Equation (4.49), the residual of a constraint〈k − 1, k〉 between the
nodesk − 1 andk is

rk−1,k = X−1
k ∆k−1,k. (4.76)

Since the rotational part is important we focus on the rotational component of the residual only
and ignore the translational part. Thus, we have

rot(rk−1,k) = RT
∆k

∆k−1,k, which leads to (4.77)

RT
∆k

= rot(rk−1,k)∆
T
k−1,k. (4.78)

After updating the rotationsR∆1 , . . . , R∆n
by a constraint〈i, j〉, with k−1, k ∈ Pi:j, we obtain

a new set of rotations in the global reference frame, namelyR∆1 , . . . , R∆n
as shown in Equa-

tion (4.61). From these, we can recover the incremental rotation,R′
∆k

, by using Equation (4.62):

R′
∆k

Eq. (4.62)
= R′T

k−1R
′
k (4.79)

Eq. (4.61)
=

[
Q∆1:∆k−1

Rk−1

]T
[Q∆1:∆k

Rk] (4.80)

= RT
k−1Q∆k

Rk (4.81)

= RT
k−1Q∆k

Rk−1R∆k
(4.82)

Combining this result with Equation (4.77), we can compute the new residualr′k−1,k after dis-
tributing the rotational error as

rot(r′k−1,k)
Eq. (4.77)
= R′T

∆k
∆k−1,k (4.83)

Eq. (4.82)
=

(
RT
k−1Q∆k

Rk−1R∆k

)T
∆k−1,k (4.84)

= RT
∆k
RT
k−1Q

T
∆k
Rk−1∆k−1,k (4.85)

= RT
∆k

∆k−1,k︸ ︷︷ ︸
rot(rk−1,k)

∆T
k−1,kR

T
k−1︸ ︷︷ ︸

=:Y T

QT
∆k
Rk−1∆k−1,k︸ ︷︷ ︸

=Y

(4.86)

= rot(rk−1,k)Y
TQT

∆k
Y. (4.87)

In the equation above (Eq. (4.87)), the termY TQT
∆k
Y quantifies the increase in the rotational

residual of the constraint〈k− 1, k〉 between the two consecutive nodesk− 1 andk. Since both
Y as well asQ∆k

are rotational matrices, andY TQT
∆k
Y changes the rotational axis but not the

angle, we finally see that the change in the residual is at mostαk and therefore limited, since

|angleOf(Y TQT
∆k
Y )| = |angleOf(Q∆k

)| (4.88)

= |αk|. (4.89)
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To this end, we have described our algorithm for graph optimization in the 2D and 3D case
and have shown that the change in the angular part of the residual is bounded when updating
a constraint. However, the complexity of our approach growswith the number of nodes in
the network. In other words, the complexity of our algorithmgrows with the time the robot
spends in the environment rather than the space the robot explored, which is critical for life-
long map learning. This problem can be solved by merging nearby nodes to a single one which
is explained in the next section.

4.5 Node Reduction

Due to the nature of the optimization technique, the complexity of our approach (per iteration)
depends linearly on the number of constraints since each constraint is selected exactly once per
iteration. For each constraint〈i, j, 〉, we need to modify exactly those nodes which belong to
the pathPi:j. However, the path of a constraint is defined given our tree parametrization. As a
result, different constraints will have different path lengths and therefore a different complexity.
Thus, we consider the average path lengthl to specify the overall complexity. It reflects the
average number of operations needed to update a single constraint during one iteration. Given
m constraints and an average path lengthl, this results in a complexity ofO(m · l). In our
experiments we found thatl is typically in the order oflog n, wheren is the number of nodes
in the network. However, the complexity of the current approach grows with the length of the
trajectory of the robot rather than with the size of the environment the robot explored. These
two quantities (i.e., length of trajectory versus time) grow different when the robot revisits
already known areas and this effect is important in the context of life-long map learning, where
the robot is bounded to a specific environment and has to update its map over time. Since
our parametrization is not dependent on the sequence of the poses, i.e., the trajectory of the
robot, we have the possibility of a further optimization. Intuitively, whenever the robot revisits
a known area, we do not need to add a new node into the graph but rather want to propagate
the information to already existing nodes of the network. Inother words, we assign the current
pose of the robot to an already existing node in the graph and update the constraints with respect
to that node. Indeed, we can now even avoid adding new constraints to the network in case a
constraint between the corresponding nodes already exists.

Given the constraint〈i, j〉(1) = 〈δ(1)ij ,Ω
(1)
ij 〉, already present in the network and a new con-

straint〈i, j〉(2) = 〈δ(2)ij ,Ω
(2)
ij 〉 between the same nodesi andj we can merge both into a new one,

〈i, j〉, made ofδij ,Ωij with

Ωij = Ω
(1)
ij + Ω

(2)
ij (4.90)

δij = Ω−1
ij

(
Ω

(1)
ij δ

(1)
ij + Ω

(2)
ij δ

(2)
ij

)
. (4.91)

Note that this can be seen as an approximation similar to adding a rigid constraint between
the already existing node in the network and a new one representing the current pose. This is
especially useful if local maps (e.g. grid maps) are used as nodes since the robot can localize in
the existing map quite accurately.

Using this technique, the size of the problem does not increase when the robot is revisiting
already known areas but rather increases with the explored environment. Although the com-
plexity stays the same, the number of nodes and edges (constraints) in the graph is reduced. As
our experiments in the next section will demonstrate, this technique for node reduction leads to
a faster convergence since less nodes and constraints need to be considered.
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4.6 2D Experiments

This section is designed to evaluate the properties of our approaches described in Section 4.1
and Section 4.5. We first present the results of simulated experiments based on large 2D data
sets and compare our approach to PPO and to Frese’s multi-level relaxation [56] (MLR). Finally,
we demonstrate that our method is also well suited to cope with the sensor and motion noise
from different sources, including wheeled and aerial robots as well as humans carrying sensors
around.

4.6.1 Simulated Experiments on Large Data Sets

This set of experiments is designed to measure the performance of our approach quantita-
tively. We compare our technique to PPO and Frese’set al.multi-level relaxation [56] (MLR).
In these experiments we used two variants of our approach. First, we used our incremental tree
parametrization while keeping all nodes in the network. Second, we used our node reduction
technique as described in Section 4.5. In the following experiments we moved a virtual robot
on a grid world. An observation is generated each time the current position of the robot was
close to a previously visited one. We corrupted both nodes and edges, by zero mean Gaussian
noise with different parameters and simulated datasets resulting in graphs with a number of con-
straints between around4, 000 and2 million. Figure 4.9 depicts intermediate graphs obtained
by PPO and our approach at different iterations. Here, the network consists of10, 000 nodes
and64, 252 constraints and the standard deviation of the Gaussian noise was set to0.05 in both
x, andy direction and0.02 in the angular term. Although both approaches converge asymp-
totically to the same solution, our approach converges faster as can be seen in Figure 4.9. In
all our experiments, the results of Frese’s MLR strongly depend on the initial configuration of
the nodes. Depending on the quality of the initial guess MLR converges to an accurate solution
similar to our approach as shown in Figure 4.10 (left). Otherwise, it is likely to diverge (see
Figure 4.10 (right)). PPO, as well as our technique are more robust and less independent of the
initial poses of the nodes.

To evaluate our technique quantitatively, we first measuredthe average error (i.e.,χ2 error per
constraint) in the network after each iteration. The left image of Figure 4.11 depicts a statis-
tical experiment over10 networks having the same topology but different noise realizations.
As can be seen, our approach converges significantly faster than PPO. For small and medium
size networks, both approaches converge asymptotically toapproximately the same error value
(see Figure 4.12). For large networks, however, the high number of iterations needed for PPO
prevented us from demonstrating this convergence experimentally. Note that we omitted com-
parisons to EKF and Gauss Seidel relaxation because Olsonet al. [114] already showed that
PPO outperforms such techniques. Additionally, we evaluated the average computation time
per iteration of the different approaches. These values areshown in Figure 4.11 (right). As a
result of personal communication with Olson, we furthermore analyzed a variant of PPO which
is restricted to spherical covariances. It yields similar execution timeper iterationas our ap-
proach. However, this restricted variant has still the sameconvergence speed with respect to the
number of iterations as Olson’s unrestricted PPO technique. Note that in this experiments, our
node reduction technique can speed up the computation up to afactor of20.
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Figure 4.9: Result of PPO (left column) and our approach (right column) after 1, 10, 50, and300 iterations for a
network consisting of10, 000 nodes and approximately64, 000 constraints. The black areas in the images originate
from constraints between nodes which are not adequately corrected after the corresponding iteration.
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Figure 4.10: The outcome of Frese’s multi-level relaxation is highly dependent on the initial configuration of the
nodes. Left: small initial pose error, right: large initialpose error.
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Figure 4.11: The left image shows the error of our approach and the error ofPPO in a statistical experiment. The
error bars have a width of2σ. The right image depicts the average execution timeper iteration for networks of
different size. For the graph containing1.9 million constraints, MLR required memory swapping and the result is
therefore omitted.

Figure 4.12: The left image shows that both techniques converge asymptotically to the same error. However, our
approach converges significantly faster, as can be also seenin the right image, which is a scaling of the left one for
the first400 iterations.
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Figure 4.13: Two maps of the Intel Research Lab in Seattle. The left map is constructed by using the raw odometry
data only. The map shown in the right imaged is the result obtained by using our algorithm. Here, the graph consists
of approximately1, 000 nodes and about1, 800 constraints. The execution time needed to converge was lessthan
1 second.

4.6.2 Real World Experiments

The experiments presented in this section are designed to illustrate that our approach can be
used to build accurate maps from real 2D robot data.

In the first experiment, the robot collected data using its laser range scanner and the goal was
to build an accurate map, given this data. The nodes in our graph correspond to the individual
poses of the robot during data acquisition. The constraintsare obtained in two ways. The first
set of constraints between successor nodes is obtained fromraw odometry. The second set of
constraints is obtained by pair-wise matching of laser range scans. The latter also allows us to
recognize previously visited locations (i.e., detect loopclosures). Figure 4.13 depicts two maps
of the Intel Research Lab in Seattle. The left one is constructed from raw odometry whereas the
right one is the result obtained by our algorithm. As can be seen, the corrected map (Figure 4.13
(right)) shows no inconsistencies like double corridors. The network belonging to this data set
contains about1, 000 nodes and approximately1, 800 constraints. Our approach needed less
than1 second to converge to the solution shown in Figure 4.13 (right) on a2GHz standard
laptop computer.

The second experiments shows the result using the Bivosa dataset from the Rawseeds [19]
project. The graph was constructed using the technique described in the previous experiment.
Compared to the previous data set, however, the raw odometry is already quite good. The map
obtained from raw odometry is shown in Figure 4.14 (left) andthe corrected map using our ap-
proach is shown in the right image of Figure 4.14. Here, the network consists of approximately
7, 100 poses and8, 100 constraints, and our approach took less than four seconds toconverge to
shown solution.

Finally, we show the result of our approach using the CSAIL data set recorded at the MIT.
The graph consists of approximately1, 800 nodes and about2, 000 constraints. Again, nodes
and edges were constructed as described above. Figure 4.14 shows the map obtained from raw
odometry (left) and after optimization using our approach (right). As in the first experiment,
our approach took less than1 second to converge to the solution shown in Figure 4.14 (right).
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Figure 4.14: The Bovisa data set from the Rawseeds project. Left: map obtained from network without optimiza-
tion. The right image shows the result after optimizing the graph for100 iterations. Our approach needed less than
four seconds to converge on the graph consisting of approximately7, 100 nodes and8, 100 constraints.

Figure 4.15: The CSail data set. The map obtained from raw odometry is shown on the left. The right image
shows the result of our approach after100 iterations. To converge to this solution, our approach needed less than
1 second. Here, the graph consists of approximately1, 800 nodes and roughly2, 000 constraints.
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4.7 3D Experiments

This section is designed to evaluate the properties of our three dimensional optimization ap-
proach as presented in Section 4.3. We first present the results of simulated experiments on
large 3D data sets and compare our approach to smoothing and mapping (SAM) [39, 88]. Sub-
sequently, we present our results on partially real robot data by using real data for different floors
of several simulated buildings. Finally, we present our results obtained using data recorded with
a cars driving around a campus as well as a car driving multiple times through a parking lot with
three floors.

4.7.1 Simulated Experiments on Large Data Sets

The following set of experiments is designed to demonstratethe robustness and usability for
large 3D constraint networks using the approach proposed inSection 4.3. In these simulated
experiments we moved a robot on the surface of a sphere and a box. An observation was gener-
ated each time a previous location was in the close vicinity of the current pose. All observations
were corrupted with a variable amount of zero-mean Gaussiannoiseσ in each translational
component (in m) and rotational component (in radians) for both nodes and edges.

The first experiment simulated a robot path along the surfaceof a sphere and is made
of 2, 200 robot poses (nodes) and8, 647 observations (constraints). Here, our approach took
around200ms per iteration on a2GHz standard laptop computer. Figure 4.16 depict snapshots
at iteration0 (initial configuration),10, 50, and300 for the noise parametersσ = 0.05, σ = 0.1,
andσ = 0.2. As can be seen, our approach yield consistent results even in the presence of high
observation noise and that even in the case of high observation noise, our approach converged
in less than 300 iterations, which took around one minute.

In a subsequent experiment we simulated a path of a robot along the surface of a box. In
contrast to the sphere experiment, less smooth constraintsare available due to sharp maneuvers
of the robot imposing an increased risk of an angle wrap-around (error distribution in wrong di-
rection). The box data set consists of2, 401 robot poses and4762 observations. For optimizing
this data set our approach took around165ms per iteration with a total of50 s for 300 itera-
tions. Intermediate snapshots as well as the initial configuration for different noise parameters
are shown in Figure 4.17.

The corresponding error curves (i.e., averageχ2 error per constraint) of both data sets for
the different noise levels are plotted in Figure 4.18. Here,the errors at iteration10, 50, and300
corresponding to the snapshots in Figure 4.16 and Figure 4.17 are highlighted respectively.

We furthermore compared our approach to the smoothing and mapping (SAM) approach
of Dellaert [39] using the sphere datasets. The SAM algorithm can operate in two modes.
Either as a batch process which optimizes the entire networkat once (like our approach) or
in an incremental mode. The latter one only performs an optimization after a fixed number
of nodes has been added. Note that this way of incrementally optimizing the network is more
robust since the initial guess for the network configurationis computed based on the result of
the previous optimization procedure. This has the effect that the risk of getting stuck in a local
minima is typically reduced. However, this comes with a significant computational overhead.
The comparison between our approach and SAM is summarized inTable 4.2. Observe, that
the batch variant of SAM got stuck in a local minima for the sphere datasets with medium and
large noise levels. In contrast to that, the incremental version always converged to a solution
comparable to ours but still required substantially more computation time than our approach.
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Figure 4.16: Snapshots for the initial configuration (iteration0) and iterations10, 50, and300 for the sphere data
set. The three columns shows the results of our optimizationapproach given an observation noise ofσ = 0.05
(left), σ = 0.1 (middle), andσ = 0.2 (right) in both translation (in m) and rotation (in radians).
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Figure 4.17: Snapshots for the initial configuration (iteration0) and iterations10, 50, and300 for the box data set.
The three columns shows the results of our optimization approach given an observation noise ofσ = 0.05 (left),
σ = 0.1 (middle), andσ = 0.2 (right) in both translation (in m) and rotation (in radians).
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Figure 4.18: Evolution of theχ2 error per constraint for the different data sets (columns) for different observation
noise parameters (rows). The highlighted points mark the errors at iteration10, 50, and300 for the corresponding
snapshots in Figure 4.16 and Figure 4.17.

Noise level SAM (batch) SAM (incremental) Our approach (batch)

σ = 0.05 119 s not tested (see batch) 30 s (150 iterations)
σ = 0.1 diverged 270 s (optimized each100 nodes) 50 s (250 iterations)
σ = 0.2 diverged 510 s (optimized each50 nodes) 50 s (250 iterations)

Table 4.2: Comparison to SAM for the sphere datasets with different noise realizations.
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4.7.2 Real World Experiments

The first experiment is obtained by extending data from a robot equipped with a 2D laser range
finder into three dimensions. We used the 2D real world dataset of the Intel Research Lab
(see previous section) and constructed virtual buildings with multiple floors. The constraints
between buildings and floors are manually added but all otherdata originated from a real robot.
The resulting dataset consists of roughly15, 000 nodes and approximately72, 000 constraints.
We introduced a high error in the initial configuration of theposes in all dimensions which
results in no visible structure in the initial configurationas can be seen in Figure 4.20(top).
Applying our approach however yields an accurate result, asshown in the bottom of the same
image. The image in the middle shows the resulting map after10 iterations. The final result
was obtained after80 iterations and needed around3 minutes calculation time.

In the second experiment we used data recorded with an instrumented car at the EPFL cam-
pus in Lausanne. Using cars as robots became popular in the robotics community [27, 118, 152,
158]. Here, the Smart car was equipped with5 SICK laser scanners, an inertial measurement
unit (IMU), cameras, and various other pose estimation sensors. The robot constructs local three
dimensional maps, so-called multi-level surface maps [156] and builds a network of constraints
where each node represents such a local map. The constraintsbetween nodes were generated
by odometry (i.e., GPS and IMU data) and laser scan matching in the case of recognizing pre-
viously visited locations. The dataset contains a trajectory which is approximately10 km long
and contains several loops. Furthermore, it includes multiple levels such as an underground
parking garage and a bridge with an underpass. The corresponding constraint network given
this data is shown in Figure 4.19 (top left) and the result obtained using our algorithm is shown
in Figure 4.19 (top right). The corrected network is plottedon an aerial image of the same area.
Note that the corrected network visually fits accurately into the aerial map of the environment.
We also used this dataset to compare our algorithm to the approach of Triebelet al. [156] that
iteratively applies LU decomposition on dense matrices, i.e., no sparsification is applied which
causes a substantial increased runtime. Here, both approaches converge to more or less the same
solution. The time needed to achieve this correction, however, is several orders of magnitude
smaller when using our approach. This is visualized in Figure 4.19 (bottom), where the error
per constraint is plotted versus the execution time. Note that the bottom right image of this
figure shows a magnified view for the first400ms.

We also present an experiment using an autonomous car driving multiple times through a
parking lot in Stanford recorded by Kümmerleet al. [95]. The trajectory covers three different
levels, from the bottom up to the roof. The car is equipped with several laser scanners, GPS,
cameras and an inertial navigation system for pose estimation. The corrected trajectory obtained
as a result of our approach is shown in Figure 4.8(b) on page 55. Figure 4.21 illustrates a multi-
level surface map created from the corrected constraint network as well as an aerial image of
the parking lot for comparison.

Up to now, all data sets were obtained using laser range scanners. In the following, we
present a set of experiments in order to emphasize that our approach is a general framework for
robotic mapping and can be used with a variety of platforms equipped with different sensors.
In the next experiment, a blimp was equipped with a down looking camera, a down looking
sonar and an IMU. Here, the limited payload of this highly embedded system prevented us from
mounting a second camera or another additional sensors. Theaerial vehicle and typical images
obtained from the analog video link are shown in Figure 4.22 (top). The network obtained
given the raw data estimated by matching visual features (SURF)[16] in combination with a
variant of PROSAC[34] is shown in Figure 4.22 (bottom left). The corresponding corrected
network is shown in Figure 4.22 (bottom right). Black lines between different nodes in the
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Figure 4.19: The constraint network corresponding to a dataset recordedwith an instrumented car at the EPFL
campus in Lausanne. Top left: Trajectory of the car before optimization. Top right: Corrected trajectory obtained
using our algorithm. The corrected network is overlayed with an aerial image of the same area for better visibility.
Bottom: The evolution of the average error per constraint versus the execution time for this data set using our
approach and the approach of Triebelet al.. The bottom right image shows a magnified view of the first400ms.

graph correspond to constraints between those. As can be seen, our system can also be used
within embedded systems and performs satisfactory well.

In a final experiment we equipped a human with two down-looking cameras and an IMU
mounted on a stick (see Figure 4.23 (top)) and let him walk around the campus. As in the
previous experiment, the transformations (and thus the constraints) between images were esti-
mated using visual features (SURF). The raw trajectory obtained using this setup for an outdoor
data set where the human walked around a building is shown in Figure 4.23 (middle left), and
the corresponding corrected network using our approach is shown in the middle right image
of the same Figure. The real trajectory has a length of approximately 190m (estimated via
Google Earth) and the corresponding network contains approximately1, 400 nodes and1, 600
constraints. Again, given the network, the convergence took less than1 second. In each node,
we also store the corresponding stereo image recorded by thecameras. Thus, we are able to
reconstruct the map, given the corrected poses. A perspective view of the corrected network is
shown in the bottom of Figure 4.23. The trajectory after applying our optimization algorithm
is 208m long. However, given the low cost stereo system used for acquiring the data has an
uncertainty of around10 cm at1m distance to the ground, the overestimation of approximately
9% to the true length is within the bounds of a consistent map. More details about this work as
well as additional experiments can be found in our paper about learning 3D maps using attitude
and noisy vision sensors [142].
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Figure 4.20: The real world dataset of the Intel Research Lab recorded in 2D is used to generate a large 3D dataset.
Each of the four buildings consists of four identical floors.The top image depicts the initial configuration. The
image in the middle depicts an intermediate results and the right one the corrected map after 80 iterations of our
approach. Note that we also plotted constraints (gray / red)between individual floors and buildings but omitted to
plot constraints from a single floor for better visibility. The corresponding lased data is shown in black. The small
image in the bottom right corner shows the corrected map of the two dimensional laser range data.
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Figure 4.21: Corrected network from a car driving in a parking lot containing three floors multiple times (see also
Figure 4.8). A multi-level surface map created from the corrected constraint network is shown in the left image. An
aerial image of the same environment is shown in the right image. The images are a courtesy of Rainer Kümmerle.

Figure 4.22: The blimp (top left) and an example image obtained through the analog video link (top right).
Bottom left: Raw odometry estimated by tracking visual features (left). The small loops and the discontinuities
in the trajectory result from the tracking of visual features in all frames given the limited sensor setup. The right
image shows the trajectory obtained after applying our optimization algorithm using this embedded system.
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Figure 4.23: Top: the sensors used for testing our approach. We assembledtwo cheap USB web-cams as a stereo
pair and combined it with a Xsens MTi IMU. We mounted the IMU together with the cameras looking down-
wards on a stick and walked around the campus. Middle: Raw odometry obtained by walking around a campus
building (left) and the corrected trajectory obtained as a result of our optimization algorithm. Bottom: Perspective
view of the textured elevation map of the outdoor experimenttogether with two camera images recorded at the
corresponding locations.
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4.8 Related Work

In the context of robotic simultaneous localization and mapping (SLAM) we can classify map-
ping techniques according to the underlying estimation approach. The most popular ones are
extended Kalman filters (EKF) [97, 137], sparse extended information filters (SEIF) [45, 151],
particle filters (PF) [106], and least squares error minimization techniques [100, 56, 74]. It
has been shown, that for some applications it can be also sufficient to learn local maps of the
environment only [78, 152, 166].

Using extended Kalman filters for robotic mapping definitelybelongs to the oldest and most
popular attempts [138, 137, 11, 107, 98]. Here, the constraints are modeled as linear functions
and noise is assumed to be white, i.e., Gaussian. In this case, the effectiveness of these ap-
proaches originates from the fact that they estimate a full correlated posterior about robot poses
and landmarks. They maintain a meanµ and a covarianceΣ of the full posterior and access of
this information is performed in constant time. However, incorporating a constraint is expensive
(O(N2), with N being the number of poses and landmark) and thus these approaches are not
very effective except for smallN [136].

In contrary to this the dual representation of the extended Kalman filter, namely the extended
Information filter (EIF), maintains the information matrixΩ = Σ−1 and the information vector
η = Σ−1µ. Although incorporating a constraint can be done in constant time, recovering the
posterior (covariance matrix and mean) is now inO(N2) [134]. Unfortunately, this information
is constantly needed during the estimation process why in the current described from the com-
plexity of EKF versus EIF is comparable. However, the information form of the filter bears a
main advantage: the advantage of sparsity. The informationmatrix can be seen as the adjacency
graph of the network. Here, an element is non-zero if an edge is present in the corresponding
network [45]. Since the perception range of the robot is limited, the information matrix contains
many zeroes. This is not the case in the corresponding covariance matrix. Even more, the spar-
sity allows for faster recovery of the posterior mean and covariance. Thrunet al. [151] propose
to truncate small weights resulting from marginalization [53] in the information matrix to speed
up computation resulting in the sparse extended information filter (SEIF). However, is bears the
risk that the covariance estimate can become overly confident. This problem is addressed by
Eusticeet al. [45, 160]. Here, the error bounds within the SEIF framework are computed more
accurately reducing the risk mentioned above.

Unfortunately, EKF based approaches as well as EIF based approaches approximate the
constraints through a linear function and thus suffer from linearization errors. If these errors are
too big, the approaches are likely to diverge [87, 157].

Particle filter based approaches approximate a distribution through a set of samples (parti-
cles). In the most popular approaches, particles representdifferent map realizations [103, 61,
140]. These differences originate from the uncertainty in the motion model. In other words,
each particle represents a specific realization of the motion noise. Thus, these approaches do
not suffer from linearization errors like the ones discussed so far and have been widely used in
the past years. However, their computational complexity grows with the number of particles.
To keep this number as small as possible, Foxet al. [50] compute the Kullback-Leibler distance
between the true distribution and the one approximated through the particles. This allows them
to adapt the number of particles in each step. However, convergence of this approaches to the
optimal solution is only guaranteed, if the number of particles goes to infinity [149].

An alternative approach is to find maximum likelihood maps byleast squares error mini-
mization. The idea is to compute a network of relations (constraints) given a sequence of sensor
readings. These constraints represent the spatial configuration between the robot’s poses. In the
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work presented in this chapter, we also follow this way to formulate the SLAM problem.
Lu and Milios [100] were the first ones applying least squareserror minimization in context

of robotic SLAM using a kind of brute force method. Their approach aims to optimize the
whole network at once. Konoligeet al. [92] use preconditioned conjugate gradient descent
for minimizing the error in the constraints. An algorithm based on conjugate gradients was
also proposed by Montemerlo and Thrun [104]. In their work, they utilize them to efficiently
invert the sparse information matrix of the system. This allowed them to learn large maps using
a Segway robot. Gutmann and Konolige [74] proposed an effective way for constructing a
graph and for detecting loop closures while running an incremental estimation algorithm. Their
general four steps, namely, incremental motion estimation, consistent pose estimation, map
correlation, and optimization are still the basic ideas behind many SLAM algorithms.

Howardet al. [81] apply relaxation to localize the robot and build a map. In contrast to the
technique described in this chapter, these approaches optimize in a step a single pose based on
all connected constraints. This can be seen as dual to approaches like ours, where in each step all
(relevant) poses are optimized with respect to a single constraint. Duckettet al. [42] propose the
usage of Gauss-Seidel relaxation to minimize the error in the network of constraints. To make
the problem linear, they assume knowledge about the orientation of the robot. Freseet al. [56]
propose a variant of Gauss-Seidel relaxation called multi-level relaxation (MLR). It applies
relaxation at different resolutions. MLR is reported to provide very good results in flat envi-
ronments especially if the error in the initial guess is limited. Recently, Olsonet al. [116, 114]
presented a novel technique for 2D robotic mapping based on stochastic gradient descent (PPO).

Frese’s Tree Map [54] assumes a topological tree structure of the graphical model and en-
forces this assumption by pruning edges and ignoring small entries in the information matrix.
Thus, only an approximation to the true map is calculated. However, since the posterior model
has a tree structure, Frese is able to perform an update inO(log n), with n being the number
of features [86]. This assumption is also made in the case of Paskin’s Thin Junction Tree Fil-
ter (TJTF) [117]. As in the case of Frese’s Tree Map algorithm, the topological tree structure
reduces the complexity compared to EKF approaches since filtering using junction trees can be
performed in linear time.

However, techniques such as PPO, Frese’s multi level relaxation or our tree incremental
network optimizer focus on calculating the most likely map and assume that the nodes and
constraints are known. Since constraints reflect data associations we can get those using for
example the ATLAS [21] framework, the approach of Nüchteret al. [113] or hierarchical
SLAM [44]. Note that these methods also globally optimize the network but this step can be
replaced by our optimization algorithm to make them more efficient. In case of visual SLAM,
we can obtain such constraints by matching visual features as proposed by Stederet al. [142].

In the context of three-dimensional mapping, only a few techniques have been proposed so
far [104, 88]. Howardet al. [82] propose to map 3D urban environments by optimizing in 2D
only. Here, roll and pitch are assumed to be measured accurately enough using an IMU. There-
fore, they avoid the problem of distributing the error in three dimensions but correct(x, y, z)
and the yaw-orientation only. Nüchteret al. [113] describe a mobile robot which is able to
build accurate 3D models. In their work, the error in a loop isuniformly distributed along the
poses obtained from odometry. Although this technique provides good estimates it can not deal
with multiple as well as nested loops.

Triebelet al. [156] described an approach for correcting the poses in 3D. In their approach,
the problem is linearized in each iteration and solved usingLU decomposition. This yields to
accurate maps, both for small and medium size environments especially when the rotational
error is small. However, as illustrated in the experimentalsection (see Section 4.7.2), our ap-
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proach is orders of magnitude faster than this method and thus their method is not well suited
to build maps for large networks.

Dellaert and colleagues proposed a smoothing method calledsquare root smoothing an map-
ping [39, 41, 88, 125] (SAM). Here, the poses and landmark locations are smoothed and the
information matrix is factorized by using Cholesky decomposition. This approach has several
advantages compared to EKF-based solutions. First of all itbetter covers the non-linearities of
the constraints. Second, it is faster to compute. In contrast to SEIFs, it furthermore provides
an exactly sparse factorization of the information matrix.Note that the major speed-up of this
method comes from a good ordering of the variables in the information matrix. Finally, SAM
can be applied in an incremental way [88] and additionally isone of the few techniques which
can be used in 2D as well as in 3D.

Grisetti et al. [59] described a general approach for optimization using Gauss-Newton on
Manifolds together with sparse Cholesky factorization. They also propose a hierarchical variant
of their approach able to minimize the error on different levels of abstraction [60]. In joint work,
Konolige, Grisetti, and colleagues [93] described a special variant for 2D mapping. Recently,
Kümmerleet al. [94] presented g2o, a general framework for graph optimization which is also
able to use bearing information typically obtained when using vision systems.

As mentioned earlier, the work closest to our approach is thework of Olsonet al. [116] (see
Section 3.5). They apply a variant of stochastic gradient descent with a novel parametrization
of the configuration space. In contrast to their approach, weapply a different parametrization
of the nodes that better reflects the topology of the environment. This, however, leads to a faster
convergence of the algorithm. Furthermore, our approach isable to correct three-dimensional
networks and our node reduction technique allows us to prevent adding new nodes into the
network when revisiting an already known part of the environment. In return, the complexity
of our approach grows with the size of the explored environment rather than the length of the
robot’s trajectory. In addition to the faster convergence this is also an advantage compared to
other approaches such as PPO or MLR since it allows for life-long map learning.

4.9 Conclusion

We presented a highly efficient solution to the problem of learning maximum likelihood maps
for mobile robots for both the two dimensional as well as the three dimensional case. Our tech-
nique is based on the graph-formulation of the simultaneouslocalization and mapping problem
and applies a gradient descent based optimization scheme. Our approach extends the PPO algo-
rithm by introducing a tree parametrization for the nodes inthe graph for the two dimensional
case. We furthermore presented an update rule for distributing the rotational error in 3D. The
tree parametrization has a significant influence on the convergence speed and execution time of
the method. It furthermore enables us to correct arbitrary graphs and not only a list of sequential
poses. In this way, the complexity of our method depends on the size of the explored environ-
ment rather than on the length of the input trajectory. This indeed is an important precondition
to allow a robot lifelong map learning in its environment.

Our method has been implemented and exhaustively tested in 2D and 3D using simulated as
well as real robot data. We furthermore compared our method to other existing state-of-the-art
solutions, namely PPO and multi-level-relaxation in the two dimensional case and SAM as well
as the approach of Triebelet al.for the 3D datasets. In all cases, our approach converges signifi-
cantly faster than the other approaches and leads to accurate maps with low errors. Note that we
omitted to compare our approach to EKF and Gauss Seidel relaxation because Olsonet al. [114]
already showed that their approach outperforms such techniques.
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Chapter 5

Autonomous Indoor Flying using a
Quadrotor Robot

We present a general navigation system that enables a small-sized
quadrotor to autonomously operate in indoor environments. To
achieve this, we systematically extend and adapt techniques that
have been successfully applied on ground robots. We describe
all developed methods and present an extensive set of experi-
ments illustrating that they enable a quadrotor to reliably and au-
tonomously navigate in indoor environments.

In the previous part of this work, we described an algorithm for efficient robotic mapping. We
modeled the world as a graph where each node represents a poseof the robot. These nodes can
also contain additional information like the current view made about the environment. Edges
between nodes, also called constraints, represent the spatial relation between two robot poses.
In the following two chapters we describe two embedded systems envisioned to assist human
personnel. First, we describe our enabling technology for autonomous indoor flying using a
quadrotor. Subsequently we describe our algorithm for indoor mapping based on human activity
in Chapter 6. In both systems, we employ a graph as the basic data structure for mapping and
utilize our tree network optimizer for estimating the most likely map and trajectory, given the
sensor observations.

In recent years, the robotics community has shown an increasing interest in autonomous
aerial vehicles, especially quadrotors. Low-cost and small-size flying platforms are becom-
ing broadly available and some of these platforms are able tolift relatively high payloads and
provide an increasingly broad set of basic functionalities[29, 112, 1]. This directly raises the
question of how to equip them with autonomous navigation abilities. Whereas most of the
proposed approaches for autonomous flying [150, 36] focus onsystems for outdoor operation,
vehicles that can autonomously operate in indoor environments are envisioned to be useful for
a variety of applications including surveillance and search and rescue tasks [24]. Compared to
ground vehicles, the main advantage of flying devices is their increased mobility.

As for ground vehicles, the main task for an autonomous flyingrobot consists in reaching a
desired location in an unsupervised manner, i.e., without human interference. In the literature,
this task is known asnavigationor guidance. To address the general task of navigation, one
is required to tackle a set of problems ranging from state estimation and world modeling to
trajectory planning.
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Figure 5.1: Autonomous flight of our quadrotor in a cluttered office room.The free space around the robot is
seriously confined, imposing high demands on pose stability, state estimation, and control. The quadrotor uses a
laser scanner (blue lines) to sense the environment. The mapalready acquired by the robot is shown in red. The
image in the bottom left shows the office room from a similar view point as the snapshot of our navigation system.

The general principles of navigation algorithms, that havebeen successfully applied on
wheel-based robots, could in principle be transferred to flying vehicles. However, this transfer
is not straightforward for several reasons. Wheeled-based robots are inherently stable. In other
words, issuing a zero velocity command results in a smooth deceleration until the robot stops.
The same does not hold for flying robots that need to be actively stabilized even when they are
already at the desired location. Obviously, turning off therotors in this situation would result in
a crash. Even more, due to the fast dynamics of a flying vehiclecompared to a ground-based one
all the quantities necessary to stabilize the vehicle should be computed within a short time and
with an adequate level of accuracy. Thus, porting existing navigation systems for ground robots
to aerial vehicles requires to fulfill more stringent constraints on both accuracy and efficiency.

In this chapter, we present the enabling technology for autonomous quadrotor navigation
in indoor environments and describe a navigation system including key functionalities, namely
localization, planning, surface estimation, map-learning, control, and obstacle avoidance. Al-
though a flying vehicle moves in 3D there is usually enough structure present indoors (i.e.,
walls, cupboards, ...) to describe the environment in 2D. Instead of using a full 3D representa-
tion we therefore rely on a 2D one consisting of vertical structures like walls augmented with
the elevation of the floor. The advantage of this choice compared to the full 3D representation
is that we can operate in a large class of indoor environmentsby using efficient variants of 2D
algorithms that work on dense grid maps instead of space and time consuming 3D methods.
Having these functionalities adapted for the 3D case would be either too slow or not accurate
enough given the limited time constraints to make the systemstable. To correct for odometry er-
rors, we embed the robots pose into a graph. This allows us to use our tree network optimization
algorithm described in the previous chapter for correctingthe map when closing loops.

Our system is a result of an integrated hardware/software design that meets several of the
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challenging constraints imposed by small-sized flying vehicles while preserving a large degree
of flexibility. Furthermore, it can be operated at differentlevels of autonomy. It can be used to
assist a pilot by keeping the position of the vehicle when no commands are given or it can be in-
structed to autonomously reach given locations in a known map. It can additionally construct a
map on-line and correct for errors when closing a loop while flying in an unknown environment.
We evaluated our system on an open source quadrotor, the so-called Mikrokopter [29] (see Sec-
tion 5.2). Figure 5.1 visualizes our quadrotor system and its internal state while autonomously
flying within a highly cluttered office room.

This chapter is structured as follows. We first discuss the requirements of a navigation
system for an indoor flying quadrotor followed by a description of our system architecture in
Section 5.2. Subsequently, we present our navigation system in Section 5.3 and present an
extensive set of experiments demonstrating the capabilities of our algorithms using an open-
source quadrotor in Section 5.4. Finally, we discuss the relation of our system to the literature
in Section 5.5 and conclude in Section 5.6.

5.1 Requirements for Autonomous Indoor Flying

In this section, we present the general problems in robot navigation and discuss the additional
issues introduced by a flying platform for indoor environments.

To autonomously reach a desired location, a mobile robot hasto be able to determine a
collision-free path connecting the starting and the goal location. This task is known aspath
planningand requires a map of the environment to be known. Usually, this map has to be ac-
quired by the robot itself by processing the sensor measurements obtained during an exploration
mission. The task of generating the map is known assimultaneous localization and mapping
(SLAM). In some cases it is sufficient to perform SLAM off-line on a recorded sequence of
measurements. If such a map has been obtained, the robot needs to be aware of its position at
any point in time in order to follow the path with a sufficient accuracy. This task is known as
localization. A further fundamental component of a navigation system is the control module
which aims to move the vehicle along the desired trajectory,given the pose estimated by the
localization or SLAM module. For all the tasks described above, we also need to know the
current movement of the robot. This is known asincremental motion estimation.

Several authors proposed effective control strategies to accurately steer ground vehicles
with complex kinematics. Most of these approaches rely on high frequency estimates of the
relative movements of the vehicle obtained by integrating the wheel encoders. The localization
module, however, does not need to run at a high frequency due to the accuracy of the odometry
within short time intervals. Unfortunately, odometry estimates are often not available on flying
vehicles. In principle, one could obtain a dead reckoning estimate by integrating the inertial
sensors. However, the limited payload typically requires designers to use only lightweight
micro-electro-mechanical (MEMS) devices which are affected by a considerable drift. For these
reasons, one needs frequent localization updates to implement effective control strategies.

In outdoor scenarios one can estimate the pose of the vehicleby fusing information obtained
from a global positioning system (GPS) and an inertial measurement unit (IMU). Unfortunately,
a reliable GPS signal is not available indoors. In the case where the building is equipped with
“indoor” GPS (e.g., based on ultra wide band (UWB) or indoor motion capturing), the robot is
restricted to operate in these previously prepared environments only. Thus, in order to assure
maximum autonomy, the robot is required to localize itself and build a map with the on-board
sensors only. To detect and avoid obstacles, these sensors should also reliably reveal the sur-
rounding obstacles.
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Figure 5.2: The quadrotor used to evaluate the navigation system is based on a Mikrokopter. We equipped the
platform with a Hokuyo laser range finder (1), an Xsens IMU (2), a Gumstix computer (3), and a laser mirror (4).

Due to the increased risk of damaging the flying platform during testing, the user should have
the possibility to take over the control of the platform at any point in time. Finally, the more
complex dynamics of a flying platform pose substantially higher requirements on the accuracy
of the state estimation process than for typical ground-based vehicles. Although positioning
errors up to1m might be acceptable in outdoors scenarios, this is not the case indoors, as the
free-space around the robot is substantially more confined.Before presenting our algorithms
meeting these requirements, we first describe our hardware platform and general system archi-
tecture in the next section.

5.2 System Architecture

Our platform is shown in Figure 5.2. It shows a Mikrokopter [29] open source quadrotor
equipped with additional sensors and computational devices. The Mikrokopter comes with
a low level controller for roll, pitch, and yaw. Additionally, we equipped it with the following
components:

1. a Hokuyo-URG miniature laser sensor for SLAM and obstacle avoidance,

2. an Xsens MTi-G MEMS inertial measurement unit (IMU) for estimating the attitude of
the vehicle,

3. a Linux-based Gumstix embedded PC with USB interfaces anda WiFi network card, and

4. a laser mirror used to deflect some of the laser beams along the vertical (z) direction to
measure the distance to the ground.
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The Hokuyo-URG is a laser range finder able to measure distances up to5.6m at a frequency of
10Hz. Yet, the ability to detect an obstacle in range depends onthe color of the sensed material
and the impact angle. We use the laser range scanner for both measuring the distances to
obstacles in the surrounding of the robot and measuring the distance to the ground via the laser
mirror. The IMU provides accurate estimates of roll and pitch up to1◦ at a rate of100Hz, that
are directly used within our localization and mapping modules. The Gumstix communicates
with the micro-controller on the quadrotor via an RS-232 interface and reads all the sensors. It
furthermore communicates with an off-board PC over WLAN. Since the embedded PC provides
a Linux operating system, we can develop our algorithms off-board on standard PCs and execute
them on-board. All on-board sensing and computation devices together weigh about300 grams
and drain approximately7.5 watts of power. The quadrotor itself consumes about120watts
while hovering at50 cm and is equipped with a11.1V, 3, 300mAh Lithium-Polymer battery
(LiPo). The current system has a weight of approximately1050 g and is able to fly up to16
minutes. Including the extends of the blades, the total spanof the quadrotor is0.65m.

Our navigation system is based on a modular architecture in which different modules (i.e.,
incremental motion estimation, SLAM, path planning, ...) communicate via the network using
a publish-subscribe mechanism. In our current system all device drivers are executed on-board
while the more computationally intensive algorithms run ona remote PC communicating wire-
less with the platform.

Due to the combination of the laser, the IMU, and the laser mirror we are able to gen-
erate two additional sets ofvirtual laser measurements. The first set consists of the laser
measurements projected onto 2D, given the IMU estimates about roll (φ) and pitch (θ). The
second set consists of all beams deflected by the laser mirror. Again, the estimate about roll
and pitch are used to compute the current distance to the ground. More formally, the laser
range scanner measures a set of distancesrti along thex-y plane in its own reference frame at
time t. Each of these distances can be represented by a homogeneousvectorb̃ti in 3D space,
b̃ti = (rti cosαi, r

t
i sinαi, 0, 1)

T , with αi being the angle of the individual (i.e.,i−th) laser beam.
Let TIMU,laser be the homogeneous transformation matrix from the IMU reference frame to the
laser reference frame, known from an initial calibration procedure, i.e.,

TIMU,laser =

(
RIMU,laser tCOR,laser

0 0 0 1

)
, (5.1)

with RIMU,laser denoting the3 × 3 rotational matrix (i.e., rotational offset between IMU and
laser) andtCOR,laser being the3 × 1 translational vector from the center of rotation (COR) to
the laser, respectively. Note that the translational offset between the IMU and the laser is not
needed, since both the IMU and the laser are attached to the robot’s frame which is a rigid body.
Thus, the orientation estimate of the IMU is independent of the location where it is mounted.

Given the estimate about roll(φt) and pitch(θt) at timet, let T tworld,IMU be the time depen-
dent transformation from the world reference frame to the IMU reference frame, i.e.,

T tworld,IMU =

(
RθtRφt 0

0 0 0 1

)
, with0 = (0, 0, 0)T . (5.2)

Usingc(α), s(α) as an abbreviation forcos(α) andsin(α) allows us to writeRt
θR

t
φ as

Rt
θR

t
φ =




c(θt) 0 s(θt)

0 1 0

−s(θt) 0 c(θt)






1 0 0

0 c(φt) −s(φt)

0 s(φt) c(φt)


 . (5.3)
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Given these transformations we can compute the position of the individual laser beambti at
time t not deflected by the laser mirror by:

bti = T tworld,IMU · TIMU,laser · b̃
t
i. (5.4)

Consequently, the pointhti, of a beam̃bti deflectedby the mirror is calculated by the following
chain of transformations:

hti = T tworld,IMU · TIMU,mirror · b̃
t
i, (5.5)

with TIMU,mirror representing the transformation from the IMU to thevirtual laser position that
accounts for the effect of the mirror.

5.3 Navigation System

Since roll (φ) and pitch (θ) measured by the IMU are in general accurate up to1◦, we can directly
use this information within our navigation system. This allows us to reduce the state estimation
problem from 6 degrees of freedom (DOF) namely(x, y, z, φ, θ, ψ)T to 4DOF, consisting of the
3D position(x, y, z)T and the yaw angleψ. However, the only sensor used to estimate these
4DOF and to detect obstacles is the laser range scanner.

In short, based on known initial calibration parameters andon the current attitude(φ, θ)T

estimated by the IMU, we project the endpoints of the laser into the global coordinate frame.
Given the projected laser beams, we estimate the(x, y, z, ψ)T of the vehicle in a 2D map con-
taining multiple levels per cell. To compensate for the lackof odometry measurements, we
estimate the incremental movements in(x, y, ψ)T by matching subsequent 2D laser scans. Fi-
nally, we control the altitude of the vehicle and simultaneously estimate the elevation of the
underlying surface by fusing the IMU accelerometers and thedistance from the ground mea-
sured by the laser. Accordingly, we track and map multiple levels underneath the robot within
an environment. This enables our robot to correctly maintain its height even when flying over
obstacles like tables or chairs. To calculate a path from thecurrent location to a goal we use a
variant ofD∗ lite [91]. While flying towards a goal, we detect dynamic obstacles by comparing
the current laser reading to the map which allows the robot tore-plan the trajectory or stop if no
valid plan can be calculated anymore.

In the remainder of this section, we first discuss our approach for incremental motion es-
timation. Subsequently, we present our algorithms for localization in a known map, SLAM,
altitude estimation, and pose and altitude control. Finally, we present our algorithms for path
planning and obstacle avoidance.

5.3.1 Incremental Motion Estimation

Some tasks, like pose stabilization, rely on an accurate local pose estimate of the vehicle in its
surroundings. To this end, we can estimate the relative movement of the robot between two
subsequent scans by using a scan-matching algorithm. Sincethe attitude is known from the
IMU, this procedure can be carried out in 2D, assuming structured indoor environments. A
scan-matching algorithm estimates the most likely pose of the vehiclex̂t at time t given the
previousk posesxt−k:t−1 and the corresponding (k + 1) laser measurementsbt−k:t, as follows

x̂t = argmax
x:=(x,y,ψ)

p(xt | xt−k:t−1,bt−k:t), (5.6)



5.3. Navigation System 83

a)

b)

c)

d)

e)

f)

Figure 5.3: The laser range scanner measures a set of distances to the closest obstacles (a). The measurements can
be interpreted as a sampled approximation to the surrounding environment (b). A grid map discretizes the world
into a set of cells of the same size. The value of a cell reflectsthe probability that this cell is occupied. Here, the
color is proportional to this value with black standing for “occupied” and white for “free”. The smaller the size
of an individual cell, the higher the resolution of the corresponding map as can be seen by comparing (c) and (d)
versus (e) and (f). However, the storage requirements are inO(nd), with n being the number of cells per dimension
d of the gridmap.

with bt = (bt1, . . . ,b
t
m) denoting the individual laser beams at timet not deflected by the mir-

ror as discussed in Section 5.2. The key idea of a scan-matching algorithm is the following.
Assuming the motion between successive laser readings to besmall with respect to the field of
view, the current laser reading should have a high overlap with the previous one(s). However,
each overlap is the result of a relative transformation between the previous scan and the current
one. Thus, the transformation which results in the “best” overlap is said to be the relative move-
ment of the robot. In this case we need to address two questions. How to get transformation
candidates and how to estimate the quality of their overlap.To solve this, and therefore Equa-
tion (5.6), we use correlative scan-matching on multiple resolutions, similar to the approach
proposed by Olson [115]. The idea behind a correlative scan-matcher is to discretize the search
spacext = (xt, yt, ψt)T and to perform an exhaustive search in the parameter space around
a given initial guess. To efficiently evaluate the likelihood p(xt | xt−k:t−1,bt−k:t) of a given
solutionxt, we use likelihood fields [149] obtained by the most likely map generated from the
last observationsbt−k:t−1. In more detail, we build a grid map with a specific cell size given
the previous observations. One cell in this grid map is of size s × s and its value reflects the
probability of an obstacle in it. Here,s is the resolution of the grid map, e.g., in cm. A synthetic
example of a laser reading and the corresponding grid maps for different cell sizes is shown
in Figure 5.3, whereas Figure 5.4 illustrates an example of alikelihood field computed from a
map. In this example, the likelihood field is calculated through a convolution of the grid map
with a Gaussian kernelK5 of size5 × 5. Note that a Gaussian kernel of sizek × k can be
approximated by multiplying the normalizedk-th line of Pascal’s triangle (transposed) by itself
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Figure 5.4: This figure illustrates a grid map (left image) and the corresponding likelihood field (right image). The
latter is the result of a convolution of the grid map with a Gaussian kernel of size5× 5.

(i.e., the outer product), which in our example is:

K5 =
(
1/16 · (1, 4, 6, 4, 1)T

)
· (1/16 · (1, 4, 6, 4, 1)) , (5.7)

= 1/256 ·




1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1



. (5.8)

Recall that our scan-matching algorithm discretizes the search space and performs an exhaustive
search within a search radius. For each of these candidate transformations we can now calculate
a score (likelihood) using the values from the cells the endpoints of the beams fall into. Since the
values represent the negative log likelihood this score is obtained by summing up the individual
values.

Thus, the complexity of a correlative scan-matcher dependslinearly (per dimension) on the
resolution at which the parameters are discretized and on the search range. A naive implemen-
tation of this algorithm is not adequate for our applicationthat demands both high accuracy and
efficient computation. To overcome this problem, we employ amulti-resolution approach. The
idea is to perform the search at different resolutions, fromcoarse to fine. The solutions found at
a coarse level are then used to restrict the search at a higherresolution.

In our implementation (see also Algorithm 2) we use a constant velocity model to compute
the initial guess for the search. We furthermore perform thecorrelative scan-matching at three
different resolutions (i.e.,4 cm×4 cm×0.4◦, 2 cm×2 cm×0.2◦, and1 cm×1 cm×0.1◦). We set
the search areaa for the first level depending on the maximum speedvmax of the vehicle and on
the frequencyf of the scanner asvmax/f for each dimension. The search areas of the subsequent
hierarchies are calculated as the sum of the resolution of the preceding level plus the current
resolution. Consider as an example a maximum velocity of1.2m per second. Since we obtain
laser observations at a rate of10Hz, this results in a search area of0.12m at the first level in the
x-y plane. The search space along the yaw rotation is depending on the aggressiveness of the
controller. In our case, we assume a maximum rotational speed of approximately70 degrees per
second. Thus, we obtain a search radius of0.12m×0.12m×0.12◦. Given the most likely solu-
tions of this level, we restrict the search area around this initial guess to0.06m×0.06m×0.06◦

for the second level and so on. LetN be the number of beams. Then we need to access the
memory a total of3 ·73 ·N times (73 ·N per level). Without the multi-resolution approach how-
ever, we would need253 · N look-ups to cover the same search area. Due to the nature of the
measurement process, we obtain a more dense sampling of objects (i.e., more laser beams that
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Algorithm 2 Multi-Resolution Correlative Scan-Matcher

Input: current projected laser reading not deflected by mirrorbt = (bt1, . . . ,b
t
m)

Input: number of scan-matchers,n, and the individual resolutionsr1:n
Input: likelihood fields for the corresponding resolutionsm1:n // built from lastk − 1 scans
Input: the search areaa = (ax, ay, aψ) and the initial guesŝxt = (x̂t, ŷt, ψ̂t)

1: rn+1 = (0, 0, 0)
2: for i = 1 . . . n do
3: r = ri // = (rx, ry, rψ)
4: Ti = ∅ // candidates found so far
5: s∗i = minimumLikelihood // current best negative log likelihood
6: Ix = (−ax,−ax + rx,−ax + 2rx, . . . ,+ax) //search space inx
7: Iy = (−ay,−ay + ry,−ay + 2ry, . . . ,+ay) //search space iny
8: Iψ = (−aψ,−aψ + rψ,−aψ + 2rψ, . . . ,+aψ) //search space inψ
9: for ∆x ∈ Ix × Iy × Iψ do

10: s = calculateNegativeLogLikelihood(bt1, . . . ,b
t
m/2,mi, x̂

t +∆x)
11: ŝ = s+ (m/2)· maxNegativeLogLikelihood(mi).
12: if ŝ < s∗i then
13: continue
14: end if
15: s = s+ calculateNegativeLogLikelihood(btm/2+1, . . . ,b

t
m,mi, x̂

t +∆x)
16: s∗i = max(s∗i , s)
17: Ti = Ti ∪ 〈s,∆x〉
18: end for
19: 〈s∗i , x̂

∗
i 〉 = getBestEstimate(Ti)

20: // if the best solution is below a minimum likelihood, no solution was found
21: // in this case we use the initial guess for this level as the result.
22: // otherwise the initial guess for the next level is the calculated best solution
23: if s∗ > minLikelihoodthen
24: x̂t = x̂∗

i

25: else
26: x̂∗

i = x̂t

27: end if
28: a = ri + ri+1 // search area for the next level
29: end for
30: return weightedMean(x∗

1, . . . ,x
∗
n, GaussianKernel)

are reflected by the object) that are close to the laser scanner. Using all laser beams therefore
would lead to a solution biased towards these densely sampled parts of the environment. To
limit this problem, we use only a subset of all laser beams. This subset is obtained by choosing
for all grid cells only one from all beams that ends in this specific cell.

We can further reduce the overall complexity by including a heuristic which tells us if we
can get a better likelihood than the current best one. In theory, when summing up the negative
log likelihoods of the beams, we can calculate in each step (i.e., after each beam) the maximum
additional score we can get from the remaining beams. If we will not get a higher likelihood
than the current best solution in this best case, we can immediately stop processing the beams
for this candidate transformation and proceed with the nextone. Unfortunately, performing
this check after each beam is even more expensive in practicedue to the additional calculation.
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approach→ 4 cm 2 cm 1 cm weighted mean unit
mean(x, y) 0.107, -0.045 0.105, 0.060 0.149, -0.040 0.066, -0.050 [m]
std(x, y) 0.145, 0.081 0.148, 0.088 0.165, 0.087 0.123, 0.076 [m]
mean(|vx|, |vy|) 0.146, 0.159 0.095, 0.106 0.084, 0.090 0.075, 0.072 [m/s]
std(|vx|, |vy|) 0.118, 0.117 0.071, 0.083 0.065, 0.072 0.058, 0.057 [m/s]

Table 5.1: Effect of the scan-matching algorithm on the pose stabilityof the flying robot

However, we observed that making this calculation once after half of the beams have been
already processed results in an average speed-up of approximately35%. More quantitatively,
our algorithm estimates the incremental motion in less than5ms on average using a standard
laptop computer. In contrast to this, a single correlative scan-matcher at the same resolution
needs about100ms.

We control the position of the vehicle based on the velocities estimated by the scan-matcher.
Accordingly, the performances of the scan-matcher play a major role in the stability of the robot.
In particular, we want to have a fast, accurate, and smooth (i.e., less oscillations) estimate. To
get an intuition about the desired accuracy, consider an error in the position estimate of±2 cm.
Assuming a sensor frequency of10Hz this error leads to a variation of20m/s in the velocity
estimate between two laser scans. This in turn can generate wrong commands by the controller
which reduces stability.

In our hierarchical scan-matcher, the high-resolution estimate (i.e.,0.01 cm grid size) is
affected by frequent oscillations due to the limited resolution of the likelihood field. Although
these oscillations could in general be filtered out by a low-pass filter, this type of filtering would
introduce a phase shift in the pose and velocity estimate (the estimated pose is in the past).
Choosing the estimate of the low resolution instead leads to aslow and “choppy” reaction of
the robot, since the robot moved already for a certain distance until a correction is executed.

To obtain both an accurate position estimate and a smooth signal, we compute the final solu-
tion as the weighted mean of the estimates of all scan-matchers in the hierarchy. The weights of
the sum lie on a Gaussian centered at the finest resolution estimate. In several experiments we
found that the weighted average of the estimates is better for control than each single estimate.
Typical outcomes of hovering experiments are shown in Table5.1. The table contains exper-
imental results comparing the effect on the pose stability using the estimate of the individual
scan-matchers versus our weighted mean approach. All runs reflect experiments where the goal
of the quadrotor was to hover at the same spot at0.5m height for15 minutes. To quantitatively
evaluate our approach, we compare the mean and standard deviation in both position(x, y),
and absolute velocity(|vx|, |vy|) obtained from the navigation system. To be able to compare
the values over different resolutions, we compute the outcome of our weighted estimate in all
runs, but only the outcome of the specific scan-matcher is used for control. It is important to
note that the mean of the pose is highly dependent on the initial calibration of the gyroscopes.
Nevertheless, we included these values for completeness.

As can be seen, using a weighted average of the different resolutions has a positive effect
on the control loop. This originates from the fact that the weighted averaging has a smoothing
effect on the pose and velocity estimate but does not includeany phase shift into the system.
Since we use a simplistic model of our quadrotor (constant velocity), using the output of the
weighted mean (with the prediction used as the initial guessfor the search) is equal to run a
Kalman filter with a large uncertainty on the prediction. Whereas including a more sophisti-
caded model for the prediction would lead to better estimates, using this simplistic strategy was
sufficient for our purposes.
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5.3.2 Localization

If a map of the environment is known a-priori, pure localization (in contrast to simultaneous
localization and mapping) is sufficient for estimating the remaining 4DOF of the quadrotor. We
estimate the 2D position(x, y, ψ)T of the robot in a given grid map by Monte-Carlo Localiza-
tion (MCL) [40]. The idea is to use a particle filter to track theposition of the robot. Each
particle represents a possible pose of the robot. Thus, we approximate the true belief of the
robot about its pose via a set of samples, namely the particles. We sample the next generation
of particles given the relative movement estimated by the scan-matcher. The update is applied
when the robot moved a certain distance (0.1m in our experiments), which prevents the filter
from degenerating towards a wrong solution. In short, particle filter-based localization can be
summarized through the following algorithm:

Algorithm 3 Monte-Carlo Localization

Input: {xt−1
1 , . . . ,xt−1

n } // set of particles at timet− 1
Input: bt //current measurement
Input: m //map of the environment
Input: vt−1,∆xt // velocity and relative displacement estimate
Output: {xt1, . . . ,x

t
n}

1: for i = 1, . . . , n do
2: //prediction step
3: x̂ti = motionmodel.sampleMotion(xt−1

i ,vt−1,∆xt)
4: //measurement update
5: wi = observationModel.calculateObservationLikelihood(x̂ti,b

t,m)
6: end for
7: normalizeWeights({w1, . . . , wn})
8: {xt1, . . . ,x

t
n} = {x̂t1, . . . , x̂

t
n}.sampleNewSetProportionalTo({w1, . . . , wn})

9: return {xt1, . . . ,x
t
n}

First, we sample a new generation based on a proposal distribution (the motion model) accord-
ing to

x̂ti ∼ p(x̂t|xt−1
i ,vt,∆xt) (5.9)

wherex̂ti is thei-th particle, generated from its predecessorxt−1
i , vt are the velocities estimated

by differentiation, and∆xt is the relative movement estimated by the scan matcher at time t.
This step is indicated by line 3 of Algorithm 3. Subsequently, we calculate for each particle
the observation likelihood, given the predicted pose. Thiscalculation is shown in line 5 and the
weights are proportional to the likelihood

p(bt|x̂ti,m) (5.10)

of the measurement. Recall thatbt = (bt1, . . . ,b
t
m) is the current projected laser measurement,

x̂ti is the pose of thei-th particle, andm is the known map (which could have also been acquired
by a different robot). Again, we calculate this value using likelihood fields as in the case of the
incremental motion estimation. Finally, we sample a new setof particles proportional to the
normalized weights as shown in lines 7–8 by employing low variance sampling as described
in [149].
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5.3.3 Simultaneous Localization and Mapping

Our system can acquire models of unknown environments during autonomous or manual flights
by simultaneous localizing and mapping the environment (SLAM). The goal of a SLAM algo-
rithm is to estimate both the vehicle position and the map of the environment by processing a
sequence of measurements acquired while moving in the environment. Note that a local map
is needed until the robot is localized if the robot is runningautonomously even when a map is
known a-priori. In our system we use the graph-based SLAM algorithm described in Chapter 4.
The idea of this algorithm is to construct a graph from the measurements of the vehicle. Each
node in the graph represents a position of the vehicle in the environment and a measurement
taken at that position. Measurements are connected by pairwise constraints encoding the spa-
tial relations between nearby robot poses. These relationsare determined by matching pairs of
measurements acquired at nearby locations. Whenever the robot reenters a known region after
traveling for a long time in an unknown area, the errors accumulated along the trajectory be-
come evident. These errors are modeled by constraints connecting parts of the environment that
have been observed during distant time intervals and are known in the SLAM community as
loop closures(i.e., previously visited parts of the environment). To recover a consistent map we
use our tree network optimization algorithm that finds the positions of the nodes that maximize
the likelihood of the edges. Figure 5.5 illustrates a typical pose-graph computed by our algo-
rithm. Here, the quadrotor flies a loop and re-localizes in the previously visited environment.
Without the explicit search for loop closures, we can not correct the error accumulated over
time as shown Figure 5.5 (left). Using our approach togetherwith our tree network optimiza-
tion algorithm we are able to correct the map as shown in Figure 5.5 (right). In the remainder
of this section we explain how we construct the graph from a sequence of laser scans and IMU
readings. The optimization approach itself is discussed indetail in Chapter 4.

Again, we restrict our estimation problem to 4DOF, since theattitude provided by the IMU
is sufficiently accurate for our mapping purposes. Furthermore, we assume that the vehicle flies
over a piecewise constant surface and that the indoor environment is characterized by vertical
structures, like walls, doors, and so on. Although trash bins, office tools on a table or the
table itself are violating this assumption using a 2D map is still sufficient for accurate mapping
and localization as will be shown in the experimental Section 5.4.2. This arises from the fact
that clutter in general is only visible in a small portion of the current measurement, whereas
mapping, for example, a desk improves localization since there is a clear difference inx-y
between a desk and a nearby wall. Thus we restrict our approach to estimate a 2D map and
a 2D robot trajectory spanning over 3DOF,(x, y, ψ)T , i.e., we map all objects as if they had
an infinite extend alongz. The estimate of the trajectory is the projection of the 6DOFrobot
motion onto the ground plane, along thez axis. We estimate the altitude of the platform once
the 2D position and the attitude are known, based on the procedure described in the next section.

We construct the graph incrementally, by adding one nodext at a time. We connect the
newly added node and the previous onext−1 with an edge〈t − 1, t〉. This edge is labeled with
the relative transformation between the two measurements computed from the scan matcher
xt ⊖ xt−1, and can be regarded as an odometry measurement between the current and the pre-
vious pose. Whenever the robot reenters a known region, we compute an approximation of
the conditional covariances of all nodes in that region using a Dijkstra [153] expansion starting
from the current node backwards to all previous poses. We then attempt to match the current
scan with all nodes whose uncertainty intersects the current field of view. Finally, we add a
new loop closure edge to the graph between the current position and each past node where the
matching succeeds, i.e. exceeds a minimum likelihood.
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Figure 5.5: This figure illustrates our graph-based SLAM algorithm. Thenodes of the graph (robot poses) and the
incremental constraints between them are shown in gray. Both images illustrate a map when the robot reenters a
known region after traveling for some time in an unknown area. Without searching for loop closures and optimizing
the map, the accumulated error results in map inconsistencies as shown in the left image. Our system re-localizes
the robot in the previously known part of the environment andinserts the loop closure constraints in the graph
(additional red lines in the right image). However, these loop closures are not satisfied by the actual configuration
of the nodes and we therefore use our tree network optimization algorithm to calculate a consistent map as shown
in the right image.

5.3.4 Altitude Estimation

Estimating the altitude of the vehicle in an indoor environment means determining the global
height with respect to a fixed reference frame. Since the vehicle can move over non-flat ground,
we cannot directly use thez component of the beamshi deflected by the mirror. Otherwise,
the vehicle would change its global altitude when flying for example over a table by the height
of that table. Our approach therefore concurrently estimates the altitude of the vehicle and the
elevation of the ground under the robot. In our estimation process, we assume that the(x, y, ψ)T

position of the robot in the environment is known from the SLAM module described above. We
furthermore assume that the elevation of the surface under the robot is piecewise constant. We
call each of these connected surface regions having constant altitude a “level”. The extent of
each level is represented by a set of cells in a 2D grid sharingthe same altitude.

Since our system lacks global altitude sensors like barometers or GPS to determine the al-
titude of the vehicle, we need to estimate the elevation and the extension of the level under the
robot. To this end, we track the altitude of the vehicle over the ground and map different eleva-
tions using a two-staged system of Kalman filters. Algorithm4 describes our approach in detail.
The first Kalman filter is used to track the altitude and the vertical velocity of the vehicle by
combining inertial measurements, altitude measurements,and already mapped levels under the
robot. The second set of filters is used to estimate the elevation of the levels currently measured
by the robot. To prevent drifts in the elevation estimate, weupdate the altitude of a level only
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when the robot measures the level for the first time or whenever the robot reenters it (i.e., enters
or leaves that particular level). Otherwise, we would constantly add measurement errors in the
system leading to a divergence of both the levels altitude estimation and the quadrotor’s height
estimate.

In detail, the first Kalman filter has a state consisting of thealtitude of the robotz, its
vertical velocityvz, and the corresponding covariance matrixΣ. Given the previous state and
current measurements from the IMU, we first predict the current altitude of the quadrotor, as
indicated in line 2 of Algorithm 4 whenever a new measurementfrom the mirror is available.
The predicted state(ẑt, v̂t)T of the filter is computed as follows:

(
ẑt

v̂tz

)
= At

(
zt−1

vt−1
z

)
+ Btatz, with (5.11)

At =

(
1 ∆t

0 1

)
, Bt =

(
0.5 ·∆t2

∆t

)
, and (5.12)

Σ̂t = AtΣt−1(At)T +Rt (5.13)

Here,atz denotes the acceleration inz-direction measured by the IMU at timet and∆t is the
time elapsed between the current and the last iteration. Furthermore,R denotes the covariance
matrix of the prediction. To obtain this matrix, we measuredthe standard deviation of the IMU’s
acceleration estimate along thez-direction,σz, and computedRt as

Rt = Bt(Bt)Tσ2
z (5.14)

=

(
0.25∆t4 0.5∆t3

0.5∆t3 ∆t2

)
σ2
z . (5.15)

Although the mirror measures only a single level most of the time it can also happen that during
level transitions more levels are sensed. For instance, when flying over a table it can happen that
one fraction of the beams is fully reflected by the tabletop, some beams are partially reflected by
the tabletop and partially by the floor (which results in a measured value somewhere between
the two objects), whereas the remaining beams are fully reflected by the floor. Not taking into
account these effects would result in wrong altitude estimates for both the robot and the levels.

Since the beams deflected by the mirror can measure more than one level simultaneously,
we need to cluster them into neighboring sets. Each of those sets is assumed to originate from a
single level and is parametrized by the mean and the covariance matrix of the beams in the set.
Let ĥ be the set of parameters of these measurements. Based on the prediction of the vehicle
posêxt+1 and the measurementsĥ, we compute the expected elevations of the levels underneath
the robot (line 5),̂L = (L̂1, . . . , L̂k). We then match the projected measurements of the level
altitude with the levels already present in the map. Since the current 2D pose(xt, yt, ψt)T is
known, we search in the current neighborhood of the map for a levelL′ whose elevation is
closer than a thresholdδ1 to one of the predicted elevations (lines 7–13).

If such a level is found in the local neighborhood of the current pose, i.e., if the current
measurement falls into a confidence region of the prediction, we assume no change in the floor
level and can calculate the updated state(zt, vtz) for the altitude and the vertical velocity. Let
L∗ = N (x;µL∗ , σL∗) be the Gaussian pdf representing a level consiting of the altitude estimate
µ∗
L (mean) and standard deviationσ∗

L. Let furthermoreh∗ = N (x;µh∗ , σh∗) denote the Gaussian
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Algorithm 4 Multilevel-SLAM

Input: beams deflected by mirror at timet: ht = (ht1, . . . ,h
t
p)

Input: current multilevel map:M
Input: current state:xt = (xt, yt, zt, vt, at,Σt)T

1: // ————————— update height estimate and measurements —————————
2: x̂t+1 = predictState(xt)
3: ĥ = clusterHeightBeams(ht)
4: // predict possible level measurements
5: L̂ = (L̂1, . . . , L̂k) = predictMeasuredLevels(x̂t+1, ĥ)
6: Ct = ∅ // the set of candidates
7: for L̂ ∈ L̂ do
8: // does the measured level already exist at the current location or in the local
9: // neighborhood(±∆x,±∆y)?

10: if ∃L′ ∈ M(xt ±∆x, yt ±∆y) : |L̂− L′| < δ1 then
11: Ct = Ct ∪ 〈L̂, L′〉
12: end if
13: end for
14: if Ct 6= ∅ then
15: // measurement update of the filter
16: 〈xt+1,L,Ct〉 = updateStateAndLevels(x̂t+1, L̂,Ct,M)
17: else
18: xt+1 = x̂t+1

19: L = L̂

20: end if
21: // ——————————————– update map ———————————————
22: // new levels
23: for L ∈ L, 〈L, ·〉 /∈ Ct do
24: M(xt, yt) = M(xt, yt) ∪ L
25: end for
26: // level exists but was not found in previous time step→ measurement update for this
27: // levels in the map
28: for 〈L,L′〉 ∈ Ct, 〈·, L′〉 /∈ Ct−1 do
29: updateLevelInMap(M, 〈L,L′〉)
30: end for
31: // level was found in the neighborhood, but is not present at the current location
32: // → extend level to current pose in the map
33: for 〈L,L′〉 ∈ Ct, L′ /∈ M(xt, yt) do
34: M(xt, yt) = M(xt, yt) ∪ L′

35: end for
36: // search for loop closures and update map
37: for L′

j ∈ M(xt, yt), L′
k ∈ M(xt ±∆x, yt ±∆y) do

38: if L′
j 6= L′

k and|L′
j − L′

k| < δ2 then
39: mergeLevels(M, L′

j, L
′
k) // see Equation (5.21)

40: end if
41: end for
42: return xt+1
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of a virtual measurement. This virtual measurement is obtained from the laser beams assumed
to be reflected by the levelL∗ and the uncterainty of the laser sensor. Then, we can computethe
Kalman Gain,Kt as

Kt = Σ̂tDT (DΣ̂tDT +Qt)−1, with (5.16)

D = (1, 0), and (5.17)

Qt = σ2
L∗ + σ2

h∗ . (5.18)

Subsequently, we can compute the update of the state by

(
zt

vtz

)
=

(
ẑt

v̂tz

)
+Kt

(
(µ∗

L + µ∗
h)−D

(
ẑt

v̂tz

))
, (5.19)

Σt = (I −KtD)Σ̂t, with I =

(
1 0

0 1

)
. (5.20)

If more then one level was found, we first merge the level’s altitude estimates and corresponding
beams into one single measurement (similar to Equation (5.21) at the end of this section) and
update the state with the corresponding virtual measurement reading. Since the estimate of the
global altitude was updated, we also propagate this information to the estimate of the current
measured levels,̂L, underneath the robot.

However, if no level was found, i.e.,C = ∅ in Algorithm 4, the gap between the current
estimate and the measurement is assumed to be generated by a at least one new floor level and
thus, the prediction of the filter is the best estimate of the current altitude (lines 14–20).

Once we have an updated estimate of the altitude and the vertical velocity of the vehicle, we
can update the elevations of the levels in the map. This is done by a second filtering stage where
we use the current estimate for the altitude and the measurements of the current levels to update
the multi-level map (lines 21–43). We assume measurements not falling into a confidence region
to be generated by a new floor level. These new floor levels can be directly included into the
map, as shown in lines 22–25 in Algorithm 4. For all measurements falling into the confidence
region of a level in the map, there exist two possibilities. Either this level was already found
in the previous time-step, i.e., the robot is (1) flying over the table and thus observed the table
already before, or (2) it is currently entering or leaving this particular level. Unfortunately, we
cannot update the level’s state in the first case, since this would lead to a divergence of the filter
as already mentioned in the beginning of this section. In thesecond case, however, we can use
the current altitude estimate in order to update the corresponding altitude of the level in the map
(lines 26–30). Here, each elevation of a level is tracked by an individual Kalman filter and the
update equations are similar to the Equations 5.11– 5.20.

Since we explicitly store objects in 2D with an extent inx-y rather than by individual lev-
els per cell, we seek for levels present in the neighborhood of the map, explained by one of
the measurements currently obtained. If such a level is found (and not present at the current
location), we extend this level to the current cell, as shownin lines 33–35.

Note that the robot observes only a limited portion of the underlying surface. Thus it may
also happen that the robot “joins” the surfaces of differentlevels to form a new one. Figure 5.6
illustrates this situation. Initially two levels corresponding to a chair (Level 1) and a table
(Level 2) are identified (a). The robot then leaves the table behind, makes a turn, and flies
over a different area of the same table. Since Level 2 is not mapped in the neighborhood of
the current pose, our system creates a new level (for the sametable), noted as Level 3 in (b).
Finally, the quadrotor continues to the originally coveredarea of the table that introduces an
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Figure 5.6: Example of level joining during the estimation of the altitude of the vehicle and of the elevation of
the underlying surfaces. Each level is represented as a set of contiguous cells in the 2D grid that share the same
elevation. The robot starts exploring an office environment. Initially it recognizes two levels (Level 1 and Level
2), corresponding to a chair and a table (a). Subsequently, it flies away from the table, turns back, and flies over
a different region of the same table (b). This results in the creation of the new Level 3. Then the robot keeps on
hovering over the table until it approaches the extent of Level 2 which has the same elevation as Level 3, originating
from the same table. This situation is shown in (c). Finally,the robot enters Level 2 from Level 3. Our system
recognizes these two Levels to have the same elevation. Accordingly, it merges them and updates the common
elevation estimate (d).

intersection of the current Level 3 and the previously generated Level 2. As a consequence, it
joins Levels 2 and 3 (see (c) and (d)).
When two levels,L′

j andL′
k, having altitudesµj andµk and covariancesσ2

j andσ2
k are merged

(lines 37–41), the Gaussian estimateN (x;µ, σ) of the joint level has the following values:

µ =
σ2
kµj + σ2

jµk

σ2
j + σ2

k

, σ2 =
σ2
jσ

2
k

σ2
j + σ2

k

. (5.21)

To summarize, we store a level as a set of 2D grid cells representing the area covered by the
corresponding object. First, we estimate the current height of the robot given the known levels
in the multi-level map. In a second step we update the map, given the estimated altitude of the
robot. Here, a level is constantly re-estimated whenever the vehicle enters or leaves this specific
level, and the data association is resolved by the known(x, y, ψ)T position of the vehicle. Fi-
nally, measurements not explained by any level present in the map are assumed to be generated
by new levels that are then included in the map. Given the techniques described so far we are
able to estimate the current pose of the robot up to an accuracy of the finest resolution of the grid
map (0.01m in our case) and can now take care of the high-level control enabling autonomous
flights.
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Figure 5.7: Our test bench for learning a mapping between a command and the corresponding angle. This simple
device allows for fixing one axis of the quadrotor and monitoring the other one using the IMU.

5.3.5 High-Level Control for Pose and Altitude

The high level control algorithm is used to keep the vehicle in the current position. The outputs
of the control algorithm are variations in the roll, pitch, yaw, and thrust, denoted respectively
asuφ, uθ, uψ, anduz. The inputs are the position and the velocity estimates coming from
incremental scan matching. A variation of the roll results in a variation of the accelerationay
which in return translates into a motion along they-axis. Analogously, a variation in the pitch
finally results in a motion along thex-axis and a variation of the thrust results in a change in the
vertical acceleration. We separately control the individual variables via proportional-integral-
differential (PID) or proportional (P) controllers. Sincein our case all control commands are
dependent on the current pose estimate, our high level control module runs at10Hz, since the
laser scanner provides measurements at this rate.

Note that the Mikrokopter (as most commercially available platforms) is equipped with a
low level controller for roll, pitch, and yaw. Thus we do not have to take care of the control
of the individual motors. Instead, we need to calculate appropriate control commands resulting
in a desired angle or thrust. In our particular case, the low level controller of the Mikrokopter
quadrotor runs at500Hz. Since commands for the yaw on common platforms determinehow
fast the quadrotor should turn and not how far, these parameters reflect the users wish of the
robots aggressiveness with respect to the yaw rotation. In contrast to this, commands for roll
and pitch result in a desired angle for which independent mapping functions must be learned.
In order to learn the mapping for our quadrotor, we fixed one axis of the vehicle to an external
frame allowing the vehicle to rotate along the other axis only. We learned the mapping function
by monitoring the current angle measured by the IMU comparedto the sent command. Our test
bench for learning this mapping is shown in Figure 5.7.

During an autonomous flight, the computed commands are sent directly to the micro -
controller via RS 232 which is in charge of the low level control (roll, pitch, and yaw) of the
platform. For safety reasons, the user can always control the vehicle via a remote control and
our system fuses the commands from the user and from the program. During our experiments,
we allow the programs to perturb the user commands by±20%. In this way, if one of the con-
trol modules fails the user still has the possibility to safely land the vehicle immediately without
needing to press a button first.

In particular, we control the pitch and the roll by two independent PID controllers that are
fed with thex and they coordinates of the robot pose. The control function inx is the following:

uφ = kp · (x− x∗) + ki · ex + kd · vx. (5.22)
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Herex andx∗ are the measured and the desiredx-positions,vx is the corresponding velocity,
andex denotes the error integrated over time. The control iny is analogous to the control inx.
Note that the integral part could be omitted (i.e.,ki = 0), but we have observed an improved
hovering behavior if a smallki is used. This originates from the fact that in our case only integer
values can be transmitted to the micro controller although the desired command is a float value.
The corresponding valueskp, ki, andkd were estimated by searching in a predefined parameter
space in an extensive set of real world experiments. The relation between the proportional part
kp (acceleration) and the differential partkd (deceleration) was manually adjusted in such a way
that the robot’s maximum velocity does not exceed1m/s. We also took special care during
parameter fitting in order to not overshoot while approaching the desired goal location. We will
show in the experimental Section 5.4.4 that using this simplistic model is sufficient for keeping
the desired position inx andy direction up to±0.2m.
We control the yaw,ψ, by the following P controller:

uψ = kp · (ψ − ψ∗). (5.23)

Hereψ andψ∗ are the measured and desired yaw anduψ is the control input, whereaskp reflects
the desired rotational speed of the robot. Even without an incremental and a differential part,
this control is able to rotate the quadrotor to the desired angle with an error of less than2◦.

The altitude is controlled by a PID controller which utilizes the current height estimatez,
the velocityvz, and the current battery voltageUt respectively. The controluz is defined as

uz = offset(Vbat(t)) + kp · (z − z∗) + ki · ez + kd · vz, (5.24)

with kp, ki andkd being the constants for the P, I, and D part respectively, andoffset(Vbat(t))
denotes the thrust command offset given the current batteryvoltageVbat(t) at time t. Here
z∗ denotes the desired height andez denotes the integrated error. Including a thrust command
offset allows us to treat the system as stationary, and therefore to use constant coefficients for the
PID controller. We learned the function offset(Vbat(t)) by monitoring the thrust and the battery
level of the vehicle in an expectation-maximization fashion. We started with a PID control
without offset(Vbat(t)) and recorded the computed thrust command required to keep the current
altitude during several test flights. For each battery levelVbat(t) we then computed the average
thrust command used to keep the current altitude. In subsequent flights we used this offset as
an initial guess for offset(Vbat(t)) and repeated the experiments resulting in an refinement for
offset(Vbat(t)) until no major change in the estimated offset appeared.

To sum up, we can now create maps of the environment during a mission and use the control
algorithms described above to let the quadrotor autonomously fly to a predefined goal location.
However, up to now we assume a direct path of flight towards thegoal. Since this assumption
does not hold in indoor environments (e.g. flying around a corner), we need path planning
techniques. This allows us to compute a valid trajectory thequadrotor has to follow in order
to reach the desired goal location. Furthermore, this module should be able to react quickly to
appearing dynamic obstacles and force the robot to either avoid them (if possible), or to stop
when no valid plan can be computed anymore. In the next section, we describe our modified
version of the popular D* lite algorithm used within our navigation system.

5.3.6 Path Planning and Obstacle Avoidance

The goal of the path planning module is to compute a path from the current location to a user
specified goal location. This path should satisfy one or moreoptimality criteria and should
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Figure 5.8: Grid map of the environment (left) and the corresponding cost map (right). The darker a cell the higher
the cost for traversing it. Black cells indicate obstacles with infinite traversability costs. By using this cost function
the robot prefers to traverse regions with a high clearance (brighter cells). We model the quadrotor as a point mass
and extend all obstacles in the gridmap by half of the quadrotor’s size plus a safety margin reflecting the robots
uncertainty in pose stabilization. Therefore, the obstacles in the right image are thicker than in the left one.

be safe enough to prevent collisions even in the case of smalldisturbances. Safety is usually
enforced by choosing a path that is sufficiently distant fromthe obstacles in the map. Finally,
due to the increased degrees of freedom of a flying vehicle compared to a ground robot, the path
should be planned in 4DOF space (i.e.,(x, y, z, ψ)T ) instead of 3DOF (i.e.,(x, y, ψ)T ). In our
system we use D* lite [91], a variant of theA∗ algorithm that can reuse previous solutions to
correct an invalid plan rather than recomputing it from scratch. Since directly planning in 4DOF
is too expensive for our system, we compute the path in two consecutive steps. First, we use
D* lite to compute a path in thex–y–z space, but we only consider actions that move the robot
in 2D spacex–y. For each(x, y)T location we know the elevation of the surface underneath the
robot from the multi-level map. This known elevation is usedto determine a possible change
in altitude the robot would have to take when moving to a nearby cell. A change in altitude is
reflected by increased traversability costs proportional to the distance in thez-direction. In other
words, we only allow the robot to fly over obstacles but not underneath. Furthermore, the cost
function of a state(x, y, z)T of the robot depends on the distance of that location to the closest
vertical obstacle in the map. The quadrotor has a quadratic shape. To simplify path planning,
we model it as a point mass in the cost map but extend all obstacles by half of the quadrotor’s
size and an additional safety margin reflecting the pose uncertainty during autonomous flight.
For reasons of computational complexity, we use the same resolution for the distance grid map
as in the first level of the scan-matcher (i.e.,0.04m×0.04m). An example of a map and the
corresponding cost map is shown in Figure 5.8.

If there exists a valid path from the current location to the goal, the technique described
above will return the optimal path with respect to the cost map. The computed trajectory is a
sequence of neighboring grid cells and we could in principlefollow this trajectory independent
of the current yaw angle. However, since the laser scanner isheading forwards, it is desirable
that the robot turns towards the direction of flight first which allows us to detect dynamic obsta-
cles. On the other hand, we want the quadrotor to perform small maneuvers, like flying10 cm
backwards, without performing a rotation first. Therefore we augment each cell of the trajectory
with a computedψ component. To achieve the behavior mentioned above, we firstcompute the
desired angle that would result in flying forwards with respect to the local frame of the robot.
In contrast to this, we compute penalty costs for not turningtowards the next cell in the trajec-
tory, proportional to the difference of the angle. Trading off the costs of rotation versus costs of
moving to the desired cell without rotating first allows the robot to perform pure sidewards or
even backwards movements and thus prevents the vehicle fromperforming unnatural maneu-
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vers. We furthermore re-use the already existing solution (plan) whenever possible. Although
we can compute a new plan after a new state estimation is available (i.e., each100ms), we do
this only when the previous one has been labeled as invalid. This can happen for two reasons.
Either the robot detected dynamic obstacles blocking his current path or the previous plan was
already used for a certain period of time (∆t = 500ms in our implementation). The latter
constraint enables us to correct for detours in the trajectory that have been introduced to avoid
obstacles that are no longer present. As stated above, we usea grid resolution of4 cm in our
implementation. With these settings, the planner requiresabout50-80ms to compute a typical
10m path from scratch. Re-planning can be done in less than10ms.

Dynamic obstacles are detected by considering the endpoints of the laser beams that are not
explained by the known map. This allows us to detect dynamic obstacles very fast and is known
in the literature as background subtraction. Each detecteddynamic obstacle is enlarged with a
safety margin of1.5m and the cells in the map are augmented with infinite traversability costs.
In this case, our planner either computes a detour or returnsno plan if there does not exist a
valid trajectory to the goal anymore. In the latter case thisforces the quadrotor to stop moving
and hover at the current location. On the other side, we re-compute the costs for traversing a cell
when it is not occupied by a dynamic obstacle anymore. This allows us to recover a trajectory
and continue the mission.

5.4 Experiments

In this section we present experiments that show the performances of each of the modules pre-
sented in the previous section, namely: localization, SLAM, multi-level mapping, autonomous
pose stabilization, path planning, and obstacle avoidance. All modules have been intensively
tested under real world conditions and most of the modules were active during all of the numer-
ous (> 50) live demonstration. However, for better readability, we will describe the outcome
of a typical experiment for each module only. At the end of this section, we will also show
the results of an experiment where the sensors of the quadrotor were powered by a fuel-cell
prototype. Videos of a series of different flights can be found on the Web [123].

5.4.1 Localization

Using 2D grid maps for localization enables our system to operate with maps acquired by dif-
ferent kinds of robots and not necessarily built by the flyingvehicle itself. In this section we
present an experiment in which we perform global localization of the flying quadrotor in a map
acquired with a ground-based robot. This robot is equipped with a Sick LMS laser scanner
mounted at a height of approximately80 cm. In this experiment, the robot autonomously kept
a height of50 cm±10 cm and we employed5, 000 particles in the filter for global localization.
Given this number of particles, our current implementationrequires10ms per iteration in total
on a standard2GHz laptop, including the incremental scan-matching that takes about5ms on
average. Figure 5.9 shows three snapshots of the localization process at three different points
in time. In each of the snapshots the green (small) circle indicates the current true pose. In this
case, the true pose was obtained by manually matching the scan to the map. The blue circle
indicates the current estimate of the filter and the highlighted (pink) part of the environment is
the projection of the current laser measurement with respect to the location of the robot as it is
estimated by the filter. Each small black dot surrounded by (white) free space represents a par-
ticle. The top image depicts the initial situation, in whichthe particles were sampled uniformly
over the free space. After approximately1m of flight, the particles start to focus around the true
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Figure 5.9: Global localization of our quadrotor in a map previously acquired by a ground-based platform
equipped with a SICK LMS laser scanner mounted at a height of0.8m. Here, the quadrotor kept an altitude
of 0.5m±0.1m. The blue and the green circle highlight the current estimate of the particle filter and the true pose
respectively. The highlighted part of the environment (pink) reflects the laser measurement projected at the pose
estimated by the filter. Particles are shown as black dots within the free space. Top: initial situation. Here,5, 000
particles were employed and sampled uniformly over the freespace. Middle: after approximately1m of flight the
particles start to focus around the true pose. Bottom: afterapproximately5m of flight the quadrotor is localized.

pose of the robot (see middle image). Here, already most of the particles originally located in an
office room have been replaced by particles within the corridor. The bottom image depicts the
situation after approximately5m of flight. By flying this distance, the robot collected enough
distinct information in this experiment to globally localize itself. Throughout all experiments
carried out in this environment, it took in average about7.1m±2.3m until the filter converged
to a solution with an average error of±0.05m (due to the discretization of the map).
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Figure 5.10: Map of on office building built with our approach using the quadrotor. The labels1–4 reflect the
locations of individual markers used for evaluating the accuracy of our mapping approach. Red arrows indicate
the pose of the corresponding camera images. The clutter in the bottom of the map originates from the seating
containing horizontal slots (see bottom right image).

5.4.2 Simultaneous Localization and Mapping

We also evaluated the mapping system by letting the quadrotor fly four loops (approximately
41m each) in a rectangular shaped building with an approximatecorridor size of10m×12m
(outer walls). The result of our SLAM algorithm is shown in Figure 5.10. To quantitatively
evaluate the accuracy of our mapping system we placed markers on the floor (labeled1, . . . , 4)
and manually landed the quadrotor close to the markers. The map in Figure 5.10 also contains
the locations of the markers and is annotated with four red arrows. They reflect the approximate
origin of the taken camera images in order to give an impression of the environment.

Since we never perfectly landed on the predefined markers we manually moved the quadro-
tor the remaining centimeters to match the predefined spots.This enables us to measure three
types of errors: the re-localization error, the absolute positioning error, and the error in open-
loop. The re-localization error is the difference between the current estimate and the estimate of
the same real world pose in the previous loop. The error in open-loop is the re-localization error
without enabling graph optimization. The absolute error isthe difference between the estimated
pose and the ground truth. To measure the absolute error we manually measured the locations
(with respect to the origin set to marker4) of the markers and compared it to the positions es-
timated by the robot when landing on the corresponding spots. Table 5.2 shows the manually
measured and the estimated poses of the markers for all loops. As can be seen, both the relative
error between the individual loops and the global pose estimation with respect to the manu-
ally measured ground-truth have a maximum error of1 cm. In this experiment, the incremental
mapping during the first loop was accurate enough (< 1 cm error) thus the optimization did not
improve the map at all. However, when ignoring the first loop,our optimization algorithm leads
to a corrected map similar to the one of the first loop. Note that all subsequent loops were also
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marker loop 1 loop 2 loop 3 loop 4 ground-truth
x1 1.11m 1.11m 1.11m 1.10m 1.11m
y1 -7.50m -7.51m -7.50m -7.50m -7.50m
x2 -6.21m -6.21m -6.21m -6.21m -6.21m
y2 -9.21m -9.21m -9.21m -9.21m -9.21m
x3 -7.85m -7.85m -7.85m -7.85m -7.85m
y3 -3.83m -3.83m -3.83m -3.82m -3.82m
x4 -0.01m -0.01m -0.01m -0.01m 0.00m
y4 -0.00m -0.00m -0.00m -0.00m 0.00m

Table 5.2: Estimated and manually measured locations of the markers for the flight containing four loops in total.
Note that the quadrotor re-localized in the existing map build of the previous loop(s) during the subsequent ones.

marker loop 1 loop 2 loop 3 loop 4 finest resolution
x4 -0.01m -0.35m -0.08m -0.17m

0.01m
y4 -0.00m 0.12m -0.07m 0.04m
x4 -0.42m -0.59m -0.36m -0.64m

0.02m
y4 0.20m 0.23m 0.11m 0.33m
x4 -0.91m -0.59m -0.54m -0.60m

0.04m
y4 0.28m 0.38m 0.29m 0.29m

Table 5.3: Comparison of our incremental SLAM (without map optimization, i.e., incremental SLAM) for each
loop using different grid resolutions at the finest level of our hierarchical scan matcher. Each scan-matcher consists
of three levels, with the second level having twice the grid resolution as the finest level. The top level has a grid
size equal to four times the finest level.

re-localized in the existing map. We therefore also evaluated each loop independently of each
other without optimization. The results of the individual loop flights for marker4 (origin) are
shown in Table 5.3 (first row). The worst flight (2nd loop) resulted in an error of approximately
0.37m total distance to the origin. To get an additional intuition about the effect of the incre-
mental SLAM algorithm we also evaluated the effect of using different grid resolutions at the
finest level of our hierarchical mapping approach on the accuracy of the individual loops. The
outcome of this experiments can be seen in the second and third row of Table 5.3. As can be
seen, using a cell size of0.01m yields the best accuracy throughout this experiment.

Recall that we assume the robot is operating in indoor environments build of vertical struc-
tures like walls, cupboards, and so on. This simplification allows us to treat the SLAM problem
in 2D and estimate the incremental motion in less than5ms. One may now imply, that this
simplification allows us to fly in highly restricted indoor environments only, since the SLAM
accuracy could drop rapidly when flying at different levels of altitude. As already mentioned
earlier, our approach will not work satisfactory in extremely cluttered environments, like, for
example, in a forest, but indeed provides accurate results in typical indoor environments. How-
ever, although the presented SLAM algorithm is carried out in 2D, we can always re-project the
data into 3D given the estimated 2D pose. To emphasize that our simplification yields accurate
3D maps we performed additional experiments. In the first experiment, we let the quadrotor
hover around the origin and occasionally changed the altitude resulting in laser measurements
taken at different heights ranging from0.2m up to1.70m. The accumulated 3D point cloud
given the estimated pose of the SLAM approach is shown in Figure 5.11 (top). Here we can
already see, that our motion estimation algorithm yields accurate results since there are no in-
consistencies present in the point cloud like, for example,double walls. Even more, we can use
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Figure 5.11: This experiment was performed to illustrate the accuracy ofour SLAM algorithm. Although we
assume structured indoor environments and thus project thedata into 2D, the estimated pose is accurate enough
to reconstruct the three dimensional environment (top) without any inconsistencies like double walls. Even more,
we can detect typical objects in the environment previouslybuild of data gathered by ground robots. The bottom
image depicts the situation for detecting the object “chair” using the approach of Stederet al. [144].

this 3D data to detect objects in the environment. To achievethis, we applied the object de-
tection algorithm proposed by Stederet al. [144, 72]. In their work, individual objects-models
like a chair are learned from high density laser data. This data was obtained by a wheeled robot
equipped with a Sick LMS laser scanner mounted on a pan-tilt unit. A 3D scan is obtained when
the wheeled robot stays at the spot and uses the pan-tilt unitto cover as much 3D space as pos-
sible. Since our quadrotor is not equipped with a pan-tilt unit, we simulated the data acquisition
by changing the current altitude when hovering around the same spot. The bottom image shown
in Figure 5.11 depicts the outcome of the matching for the object “chair”. Here, both chairs in
the environment were correctly detected and the corresponding measurements are overlayed
with the high density point clouds of the chair object. As canbe seen, our pose estimation is
accurate enough for object detection even though the assumption of how the data was obtained
is highly violated (i.e., fixed position and pan-tilt unit versus freely floating quadrotor).

The second experiment was performed in order to test if the accumulated 3D point clouds
are accurate enough for place recognition. We manually flew the quadrotor within an office
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Figure 5.12: 3D map of our office environment acquired by the quadrotor. The rectangles labeled1, . . . , 23 mark
the individual locations where the quadrotor recorded a 3D scan by occasionally changing its altitude. The blue
part of the rectangle reflects the front and the red part represents the rear of the scan position, respectively.

environment. Again, once in a while we occasionally changedthe altitude while hovering
around the same spot. We also turned the robot by 180 degrees in order to obtain a 360 degree
scan. The whole data set consists of 23 scans, each recorded around one spot. The map obtained
using our SLAM module is shown in Figure 5.12 whereas Figure 5.13 and Figure 5.14 show
the 3D scans acquired at the individual locations.

To detect if two scans were recorded in the same area, we first extract normal-aligned radial
features (NARF) [146] for each 3D measurement and match thoseagainst the features from each
other scan. Since each NARF encodes a full 3D transformation we also estimate the relative
transformation between the two scans. Based on an observation model of the laser scanner
we now compute a similarity value between different scans, given the matched NARF’s and
the estimated transformation. Intuitively, the computed value reflects the confidence that both
measurements were recorded in a local vicinity. Note that this is a brief description of the whole
algorithm and we refer to [145, 72] for a detailed description.

Each scan-pair yields a confidence score between 0 (no similarity) and 1 (perfect match).
The ground truth confusion matrix representing this valuesis shown in Figure 5.15 (top left)
together with some examples of matches. The confusion matrix computed by our approach is
plotted in Figure 5.16 (left). In both plots, white areas reflect a confidence of 0 whilst black areas
represent the value 1. Dark cells not located at the diagonaldescribe estimated loop closures,
i.e., different scans acquired in the same area similar to each other. Figure 5.16 (right) plots the
recall rate, the number of true positives and the number of false negatives with respect to the
maximum distance between individual scan. For example, we correctly recognized39 out of46
loop closures (i.e., recall rate of0.75) for which the distance between the scan-pairs is at most
1.5m (as measured by our SLAM system). Due to the limited range ofthe laser scanner the
overlap between individual scan drops rapidly the further away the scans are from each other.
This effect can be seen in the plot starting from a distance of2m. The recall rates, however, are
similar to those where data was obtained with wheeled robotsequipped with a SICK LMS laser
scanner mounted on a pan-tilt unit (see [145]).

As can be seen from these experiments, our SLAM module yieldsaccurate results in indoor
environments although the algorithm is carried out in 2D only.
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Figure 5.13: Individual 3D scan taken at positions1 to 12 (see Figure 5.12).
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Figure 5.14: Individual 3D scan taken at positions13 to 23 (see Figure 5.12).
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Figure 5.15: Ground truth confusion matrix for the scans1, . . . , 23 (top left). The remaining images show exam-
ples of matches between scan2 and7 (top right),4 and6 (bottom left), and13 and20 (bottom right).
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Figure 5.16: Computed confusion matrix (left) and the results obtained using our approach [145] for place recog-
nition (right). Due to the limited range of the laser scannerthe recall rate starts to drop rapidly for scans more than
2m apart.
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5.4.3 Multi-Level SLAM and Altitude Estimation

In the following, we show the typical behavior of our altitude estimation module. In this ex-
periment, we let the robot fly autonomously in a typical officecontaining chairs, tables, and a
high amount of clutter. The chairs have a height of48 cm and the tables are arranged next to
each other having a height of77 cm. During this mission the system flew once over the chair
and several times over the tables where it also flew a loop. Figure 5.17 (top images) shows an
image of the office environment the robot operated in and a snapshot of our multi-level mapping
system during this mission. As can be seen from this figure, our algorithm correctly detected
the objects at corresponding levels. The estimated height of the chair was48.6 cm±2.7 cm and
the estimated height of the tables was74.9 cm±2.8 cm, respectively. Each multi-level cell has
an extend of10 cm× 10 cm. The raw height measurement and the estimated height given our
multi-level SLAM are shown in Figure 5.17 (bottom left) whereas the estimation of the different
levels underneath are depicted in Figure 5.17 (bottom right). Note the loop closure at time53.
Here, two different realizations of the tables (level2 and level3) were merged into one. In-
termediate snapshots of this experiment can also be seen in Figure 5.6 on page 93. We have
also performed several tests by flying over different types of objects, including objects stacked
on each other (for example, a box placed on top of a table). Throughout all experiments, we
correctly detected the objects underneath the robot with anaverage altitude estimation error of
2.1 cm±1.3 cm. The outcomes of additional experiments can be found in [65].

5.4.4 Pose Control

Since the system is stabilized by independent controllers,we discuss the result of each individ-
ual controller separately. Again, all modules were extensively tested under real world conditions
in over 50 live demonstrations and were active during the previous experiments as well. The
following experiments are therefore included for completeness.

Altitude Control For testing the altitude control, we set the desired altitude to1.50m. In the
beginning the vehicle was hovering over the ground. After enabling the stabilization the vehicle
started climbing to the desired altitude. The desired height was kept by the vehicle up to an
error of±12 cm. The results are shown in Figure 5.17. This experiment wasperformed whilst
flying over different elevations. Throughout all experiments, the quadrotor is in general able to
keep the desired altitude up to an average error of approximately ±10 cm.

Yaw Control Similar to the experiment regarding the altitude, we ran an experiment to assess
the behavior of the yaw control. In this test we set a desired yaw of 0◦ and once in a while,
we turned the helicopter via the remote control. When the userreleased the remote control, the
vehicle always returned back to its desired yaw with an errorof ±2◦. Figure 5.18(a) plots the
outcome of a typical run for yaw stabilization.

x, y Control Finally, we show an experiment for the pose stabilization only. The pose stability
is strongly affected by the latency of the system (i.e., the time needed to calculate the command
given the laser data). Although incremental motion estimation takes less than5ms in average
(with a maximum of15ms) we have to deal with a latency of around120ms in average due
to the wireless transmission and decoding of the wireless signal on the Gumstix processor.
A typical run including autonomous pose stabilization is shown in Figure 5.18(b). Here, the
quadrotor was set to keep the initial pose of(0, 0) and once in a while, the user used the remote
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Figure 5.17: Estimation of the global height of the vehicle and the underneath floor level. Whenever the quadrotor
moves over a new level, the innovation is used to determine a level transition. The estimate of the height of each
level is refined whenever the robot reenters that particularlevel. Top left: The office environment our robot operated
in. This image is recorded from a view point close to the one shown in the top right. The latter shows a visualization
of our multi-level SLAM system during the mission. The cyan and dark yellow colored level corresponds to the
chair and the tables detected underneath. The blue lines represent the current laser measurement not deflected by
the mirror in the local reference frame of the quadrotor robot (black). Bottom Left: A plot showing the estimated
altitude of the vehicle over time versus the raw measurement. The corresponding estimated levels are depicted in
the bottom right plot. Here, level1 is the chair, and the levels2 and3 reflect the individual tables. Note that Level3
is merged with Level2 after the loop closure at time index53.
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Figure 5.18: Experiments for the autonomous stabilization of yaw (a) andpose (b). During the yaw stabilization
experiment, the quadrotor was required to rotate to0◦, while the user manually turned the robot once in a while
to a random orientation. Within the pose stability experiment the quadrotor was set to hover at(0, 0), but was
manually moved backwards once in a while and required to fly back to the initial pose autonomously. The latency
of the system is shown in (c).
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Figure 5.19: Experiment for path planning and dynamic obstacle avoidance. The quadrotor is given a goal point
approximately 5 m in front of it. The goal point and the planned trajectory are shown in the left image. Here,
the black triangle represents the final goal whereas the sequence of red triangles reflect the planned path. While
the quadrotor approaches the desired goal location, a person enters the corridor and blocks the robot’s path. The
person (including the safety margin of 1.5 m) is visualized as a shaded box. Since the human is blocking the robot’s
path, there is no valid plan to the goal anymore. The quadrotor therefore hovers around the last valid way point as
illustrated in the middle image. In the third image the person moved back, leaving the quadrotor enough space for
a detour.

control to move the quadrotor around1m backwards. The quadrotor then autonomously moved
back to the desired position. Depending on the latency in thesystem the pose oscillations
are typically around±20 cm (around the desired location). The latency of the system from a
typical experiment is depicted in Figure 5.18(c). With our current setup, the quadrotor is able
to autonomously keep the desired pose up to a latency of approximately350ms. In this case,
the oscillations are around±40 cm. However, we observed in several experiments a high risk
of a crash with nearby walls when the latency grows beyond400ms over an extended period of
time.

5.4.5 Path Planning and Obstacle Avoidance

In this section, we present an experiment demonstrating ouralgorithms for path planning and
dynamic obstacle avoidance. The quadrotor was given a goal point approximately5m in front
of it (i.e., along thex direction). Figure 5.19 (left) demonstrates this situation. The final goal
(x, y, z, ψ)T is visualized by a black triangle and the planned trajectoryis shown via a sequence
of red triangles. In the beginning, a person was standing on the left (see the shaded area in
Figure 5.19) entering the corridor and stopping in front of the quadrotor while the robot moved
to its desired goal. Although only the upper part of the humanlegs are detected, the dynamic
obstacle is enlarged by a safety margin of1.5m meters which is visualized by the shaded box.
The situation where the human is entering the corridor is depicted in the left and middle image.
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Figure 5.20: Top left: Fuel-cell prototype mounted on our quadrotor robot. The stack is build of six generators and
provides up to 11.5 Watt of power. This is enough to power all on-board modules of the robot except the motors.
The reactor for providing the necessary hydrogen is shown inthe bottom left image. The right image depicts a
snapshot of an experiment. Here, the author of this work was controlling the quadrotor while the hydrogen for the
fuel-cell was provided by a supply line. The power generation of the fuel-cell while being cooled and dried by the
wind present next to the propellers is shown in Figure 5.21.

In the latter one, the person is completely blocking the robot’s path. In this case the quadrotor
hovered around the last valid way point since there was no valid plan to the goal anymore.
When the person moved to the left again, the quadrotor was ableto follow a detour as shown in
the right image of Figure 5.19.
The snapshots show the endpoints of the laser only. Althoughit looks like the quadrotor might
have the space to fly around the person in the middle image, there is no valid plan since in the
planning approach the quadrotor is modeled as a point. Consequently, each laser measurement
is enlarged by the robots dimensions (see also Figure 5.8 on page 96).

5.4.6 On-Board Power Generation using a Fuel-Cell Prototype

Up to now, we used a fixed hardware setup and presented different software modules that al-
lowed autonomous indoor flights. However, our system is robust enough even in the presence of
additional payload. For the sake of completeness, we will therefore describe an experiment per-
formed with an experimental fuel-cell in the next section. It was used to power the navigation
system of the robot (i.e., all components except the motors).

In an attempt to test new power sources regarding usability in the context of small flying
vehicles, we tested a fuel-cell prototype which was developed by the group of Robert Hahn at
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Figure 5.21: Outcome of the experiment shown in the previous figure. The quadrotor was flying between seconds
240 and 380. As can be seen from the plot, the voltage and the drained current did not drop during the whole
mission,i.e., the fuel-cell reliably provided the necessary power for the on-board modules of the quadrotor.

TU-Berlin within the muFly project [108]. In cooperation with them, we tested their prototype
for on-board power supply using our quadrotor. The overall fuel-cell is a stack built of six
generators, each generating power at1.5V. The whole stack is able to provide up to11.5 Watt
of power and has a total weight of approximately80 g. We used our quadrotor to test the effect
of environmental conditions on the power generation. In detail, we tested if the fuel-cell is able
to reliably provide the necessary power, given the fuel stack is constantly cooled and dried by
the air that is present underneath or close to the propellers. Here, the fuel-cell provided power
for all components of the quadrotor except the motors. The stack (fuel-cell) mounted to our
quadrotor robot is shown in Figure 5.20 (top left). Figure 5.20 (right) shows an experiment
where the necessary hydrogen was provided via a supply line.The outcome of this experiment
is shown in Figure 5.21. As can be seen, even though the stack was constantly cooled by the
thrust generated from the propeller, the supply voltage as well as the current did not drop (see
seconds240 up to380). We furthermore tested on-board hydrogen generation for the fuel-cell
using a reactor where3ml H2O heated up to60 degrees were combined with0.8 g NaBH4, and
performed full autonomous indoor flights. A snapshot of a flight is shown in Figure 5.22. The
whole video can be found on the Web [123]. The running reactoris also shown separately in
Figure 5.20 (bottom left). Here, the total of4g of fuel were enough to power the on-board
sensors up to7 minutes. Although in the current configuration (80 g fuel stack,6 g reactor,
and4g fuel) the whole system is clearly outperformed by standardLithium Polymer batteries,
it shows that this technology can in principle be used in small flying vehicles. Note that this
prototype is several orders of magnitude lighter than othercurrent state-of-the-art fuel-cells.
However, the current technology is still too heavy for smallunmanned aerial vehicles (UAV’s)
but we are optimistic that there will be a new generation suitable for this size within the next
decades.
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reactor

fuel-cell

Figure 5.22: Snapshot from an autonomous indoor flight using the fuel-cell for powering the on-board modules.
The whole video can be found on the web [123]. The left image depicts the outcome of our SLAM algorithm after
flying the corridor back and forth. The right image displays the quadrotor at the same time. The location of the
reactor and the fuel-cell are highlighted. Despite the presence of additional payload the robot reliably performed
autonomous navigation.

5.5 Related Work

In the last decade, flying platforms received an increasing attention from the research commu-
nity. Indeed, IEEE recently elected unmanned aerial vehicle technology to one of the top eleven
technologies of the last decade [84]. However, one of the major reasons for the increased inter-
est is the availability of enabling technology at low cost. Starting from electrical motors able to
generate the desired thrust up to micro controllers which have sufficient processing power for
on-board stabilization. In the context of helicopter-likeUAV’s, most authors focused on mod-
eling and control of these vehicles in the beginning with a special focus on roll, pitch, and yaw
stabilization [121, 147, 7, 8, 25, 43, 30, 80, 162]. The available payload is one of the key diffi-
culties for autonomous flights. In other words, the more payload available, the more and better
sensors can be carried. In the field of micro and small air vehicles only very limited sensing
and processing power is available. Bouabdallahet al. [24] present a micro coaxial helicopter
which is able to stabilize along roll and pitch. It is furthermore equipped with reactive obstacle
avoidance using a miniature omnidirectional camera and eight laser pointers. Although lot of
research has been done in context of learning and modeling the low level control, we also need
capabilities to obtain the global pose to allow autonomous navigation. Hoffmannet al. [79] pre-
sented a model-based algorithm for autonomous flying with their STARMAC-quadrotor. Their
system is able to fly autonomously in outdoor environments. Here, the IMU is used for sta-
bilizing the individual axes and GPS measurements allow forautonomous outdoor flights. Ng
and colleagues [111, 36, 2] have developed algorithms for learning controllers for autonomous
helicopter navigation. Their approach allows helicoptersto perform impressive and aerobatic
maneuvers in outdoor environments, including flying upsidedown. In context of outdoor au-
tonomous flying, Schereret al. [132] describe an algorithm for flying fast among obstacles like
buildings, trees and wires. They use a big helicopter which is able to carry a SICK laser scanner
and a desktop computer and employ 3D grid maps for registering objects detected by the laser
scanner. Subsequently, they use a two step planning mechanism for obstacle avoidance. The
first level (called global planning) is a multi-resolution Laplacian planning algorithm and cal-
culates the desired trajectory towards the goal. The trajectory planned by this system is locally
adapted by a potential field-like algorithm in order to avoidobstacles.

Most of the work addressing navigation for UAV’s is based on vision [73, 76, 12, 89, 4,
18, 90]. Templetonet al. [148] demonstrate how to use vision for outdoor terrain mapping
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and autonomous landing. In their work, they use geo-referenced images from a single camera
and utilize a recursive multi-frame planar parallax algorithm [57] for terrain mapping. Landing
areas are detected by scoring different elevations of an area candidate within the estimated
map. Tournieret al. [155] and Bourquardezet al. [26] use monocular vision to estimate and
stabilize the current pose of a quadrotor. Whereas Tournier and colleagues estimate the current
state based on Moire-Patterns, Bourquardezet al.use zero and first order moments extracted
from images for control. Johnsonet al. [85] use vision in combination with ultrasound for
autonomous flights in corridor-like environments. They usea Sobel filter to detect edges and
extract line features from the image. Parallel lines are assumed to represent a bounding box of
the corridor which is used for autonomous flying. The same principle in combination with a
similar approach for edge detection was also used later by Celik et al. [31].

Thrun et al. [150] used a remotely controlled helicopter to learn large-scale outdoor 3D
models. They employ a downwards facing SICK laser scanner andalign the measurements
using scan-matching in order to generate three-dimensional maps. However, this information
is not used for autonomous control. Stederet al. [143, 142] also employ a downwards fac-
ing camera for building accurate maps of the environment. They track SURF features over a
sequence of images and perform graph-based optimization whenever a loop-closure has been
detected. Blöschet al. [18] also use a down-looking monocular camera. They learn anaccurate
model of their quadrotor which allows autonomous indoor flights. Chevironet al. [33] combine
information from an IMU and a down-looking camera to estimate the current pose and velocity
of the quadrotor during manually controlled flights.

Ahrenset al. [5] use an external tracking system to estimate the current state of the fly-
ing robot. Here, the robot is equipped with visual markers which are accurately tracked via
Vicon camera tracking system [159]. Such a system is also used by Mellinger and colleagues
for performing aggressive maneuvers [102]. Huanget al. [83] developed a detailed model of
their STARMAC II quadrotor in order to fly difficult maneuvers,while Purwinet al. [122] use
learning by iteratively solving a linear least squares problem to achieve a similar performance.

There has also been some work addressing the navigation of flying vehicles in indoor en-
vironments in absence of GPS. Several authors used vision tocontrol or assist the control of
an indoor quadrotor [85, 89, 5]. Robertset al. [129] used ultrasound sensors for controlling a
flying vehicle in a structured testing environment, while Heet al. [77] presented a system for
navigating a small-size quadrotor without GPS using laser.Here, the pose of the vehicle is esti-
mated by an unscented Kalman filter. Whenever the robot has to reach a given location, a path
which ensures a good observation density is computed from a predefined map. These highly
dense observations minimize the risk of localization failures. Achtelikaet al. [3] developed
an indoor autonomous quadrotor equipped with a laser range scanner and cameras enabling
autonomous hovering in a constraint indoor environment. The work closest (although orthog-
onal) to ours is a recent work of Bachrachet al. [13]. Here, the authors present a system for
performing autonomous exploration and map acquisition in indoor environments. They extend
the 2D robot navigation toolkit CARMEN [130] by adding a Rao-Blackwellized particle filter
for SLAM and an algorithm for frontier-based autonomous exploration. However, they do not
provide localization, map optimization, obstacle avoidance or mutli-level SLAM. In contrast to
that, we utilize the more robust graph-based SLAM algorithmin our system allowing for map
optimization and thus correcting previous poses as well. Inmore detail, graph-based SLAM
addresses the full SLAM problem while other filtering techniques address the on-line variant of
SLAM only. We also presented our algorithm for estimating the altitude of the surface under-
lying the robot. This enables a quadrotor equipped with our system to fly over surfaces with
heights that are piecewise constant.



5.6. Conclusion 113

5.6 Conclusion

We presented a navigation system for autonomous indoor flying utilizing an open-hardware
quadrotor platform. We described a complete navigation solution that approaches the different
aspects of incremental motion estimation, localization, (multi-level) mapping, path-planning,
obstacle avoidance, height estimation, and control. Sincewe do not rely on special character-
istics of the flying platform like the system dynamics, we believe that our system can easily
be adapted to different flying vehicles. All modules in our system run on-line. However, due
to the relatively high computational cost of some algorithms only a part of the software runs
on-board on the Gumstix processor whereas the other part runs off-board on a laptop computer.
Preliminary tests make us confident that the whole system will run on-board using the next
generation of embedded computers based on the Intel Atom processor. We provided a wide
range of extensive experiments and videos [123] that highlight the effectiveness of our system.
Although we assume structured indoor environments, our mapping algorithm provides accurate
3D results which is also suitable for object recognition as well as place recognition.
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Chapter 6

Activity-Based Indoor Mapping and
Estimation of Human Trajectories

We present a novel approach to incrementally determining the tra-
jectory of a person in 3D utilizing human motion and activity in
real-time. In our algorithm, we estimate the motions and activities
of the user given the data obtained from a motion capture suitwhich
is equipped with several inertial measurement units (IMUs).These
activities include walking up and down staircases as well asdoor
opening and closing events. We interpret the first two types of ac-
tivities as motion constraints and door handling events as landmark
detections in a graph-based simultaneous localization andmapping
(SLAM) framework. Since we cannot distinguish between individ-
ual doors, we employ a multi-hypothesis tracking approach on top
of the SLAM procedure to deal with the high data-association un-
certainty. As a result, we are able to accurately and robustly recover
the trajectory of the person. Additionally, we present an approach
to build approximate maps of structured environments usingthis
type of information. We take advantage of the fact that people tra-
verse free space and that doors separate rooms to recover thegeo-
metrical and the topological structure of the environment after the
graph optimization. We evaluate our approach in several experi-
ments carried out by different humans in various environments.

In the previous chapter we described the navigation system enabling a quadrotor to fly au-
tonomous indoors. The world was encoded using a graph structure. This allowed us to use our
tree network optimization algorithm (see Chapter 4) for finding the most likely map, given the
observations. This data structure is also used in the following work allowing us to simultane-
ously localize a human and map the indoor environment based on human activities only.

The problem of localizing and tracking people has recently received substantial attention in
the robotics community as knowledge about the current position of its users can help a robot
to improve its services. Especially in emergency situations, like after earthquakes or during
fire fighting, the knowledge about the location of people can greatly support search and rescue
missions. Consider, for example, firefighters in a building enclosed by smoke and fire. If a map
of the environment can be constructed while the firefighters are within the building, an operator
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Figure 6.1: Left: The author wearing the Xsens MVN data suit. Right: Typical data obtained from the suit when
a person opens a door and enters a room.

or automated system can re-route the people to the exit in case of an emergency. Alternatively,
one can use the map of the environment to more intelligently coordinate the actions of the rescue
workers to more efficiently search the environment for potential victims and contemporaneously
reduce the time the rescue workers are exposed to potential threats and hazards.

In this chapter, we consider the problem of simultaneously estimating the trajectory of a
person walking through an indoor environment and the map of the environment based on data
obtained with an Xsens MVN data suit [165] by treating activities as landmarks. The MVN data
suit records full body postures of a human, by using a set of inertial measurement units (IMUs)
and a biomechanical human model. Figure 6.1 (left) shows theauthor wearing the MVN data
suit and Figure 6.1 (right) depicts typical data obtained when a person opens a door.

Figure 6.2 (left) depicts the raw odometry estimated by the suit when walking in a typical
university building. The outcome of our proposed approach is shown in Figure 6.2 (right). To
correct odometry errors, our approach applies supervised learning for classification of different
types of activities such as stair climbing and door handling. It then utilizes the learned clas-
sifiers to detect doors and stairs and applies a graph-based formulation of the SLAM problem
to recover the full 3D trajectory of the person. In this formulation, the odometry estimated by
the IMUs and the estimated heights of the steps are regarded as (chain-)links between detected
doors, which are the landmarks of our system. To deal with thehigh data association uncertainty
in the landmark detection, our algorithm applies a multi-hypothesis tracking scheme. After cal-
culating the path of the person, our algorithm renders a map containing the individual stairs, the
estimated doors, and approximate locations of walls.

This chapter is structured as follows. First, we describe the hardware system in the next sec-
tion. Subsequently, we present our algorithms for learningdoor handling events and detecting
stair steps. Section 6.3 introduces the multi-hypothesis tracking technique for sensors providing
only positive feedback and especially the expressions needed to calculate the probabilities of
individual world hypotheses. In Section 6.4, we describe how we detect potential loop closure
candidates. This is followed by the description of our overall system in Section 6.6. In Sec-
tion 6.7 we present our experimental results based on real data recorded with people walking
inside various buildings. The experimental section includes trajectories covering single as well
as multiple floor levels. We furthermore present our resultson approximate mapping and com-
pare the estimated maps with floor plans of the same building.Finally, we discuss related work
in Section 6.8 and conclude our presented work in Section 6.9.
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a) b)

Figure 6.2: Our approach uses human motions to detect door handling events. These events are used as landmarks
in a graph-based formulation of the SLAM problem for recovering the full trajectory of the person. The raw
odometry data provided by the data suit is shown in (a). The corrected trajectory after applying our approach is
visualized in (b).

6.1 Hardware Architecture

The Xsens MVN data suit used within this work is shown in Figure 6.3. It has been used with
the softwareMVN Studio 2.6from Xsens and has the following properties:

• 17 hardware IMU’s

• 23 IMU’s in total (hardware and software emulated)

• measurements up to 120Hz for each IMU consisting of

• pose, orientation, velocity, and acceleration

The 17 hardware IMUs are visualized as blue circles and blue stars in Figure 6.3, depending if
they are localized on the back (circles) or in the front (star). The software, however, emulates
additional six sensors by interpolation. The pink circles indicate the location of these emulated
sensors. The most important ones are also labeled with namesreflecting their position. In total,
the Xsens software processes the raw data and we get filtered measurements from 23 inertial
measurement units at a frequency up to 120Hz. Due to an underlying human biomechanical
model and the corresponding kinematic chain, the Xsens software calculates a full 6D position
(i.e., (x, y, z, φ, θ, ψ)T ) for each of the sensors. Additionally, we obtain filtered velocity and
acceleration estimates. However, the individual IMUs are affected by magnetic disturbances in
the environment, since parts of the IMUs orientation estimation is based on the measurement of
the earth-magnetic field.
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Figure 6.3: The Xsens MVN data suit is equipped with 17 MTi IMUs. Togetherwith an underlying human body
model a total of 23 IMUs are emulated. The data provided for each of these sensors includes the position(x, y, z),
orientation (φ, θ, ψ), acceleration, and velocity. The blue circles highlight the position of the hardware IMUs
visible from the back, whereas blue stars reflect the hardware IMUs located in front. The pink circles show the
position of additional emulated IMUs.

6.2 Feature Detection

The MVN software filters the raw data of the IMUs in the data suit and estimates an odometry
of the body segments consisting of the (filtered) 6D pose, velocity, and acceleration. A dead
reckoning estimate of the trajectory typically leads to an inconsistent map due to the accumu-
lation of small errors over time as shown in Figure 6.2 (left). Therefore, we need to keep track
of other specific events or features. Without this additional information we cannot detect loop
closures and thus cannot correct the raw odometry from the data suit.

Within this work, we restrict ourselves to structured environments such as office buildings.
To allow us to correct the odometry within such buildings, wepropose to use information about
human activities as landmarks. We extract two different types of activities:opening or closing
of a door and walking up or going down a stair. We use motion templates to detect door
opening or closing events and a neural network to detect steps. In the next sections, we will
briefly describe both approaches.

6.2.1 Door Handling Events

To learn the typical motion used for handling a door we use motion templates (MT) as proposed
by Müller et al. [109]. The key idea of this work is to use simple Boolean features likeright
hand is above headto create more expressive features (motion templates) by combining the
simple ones. Givennf of those features and a motion sequence of lengthK, this leads to a
matrix of sizenf × K. Each entry of this matrix is either 1 or 0 indicating this feature being
active or not at the specific time and that the sequence lengthK can in general be different for
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Figure 6.4: A synthetic example: Given two examples (a) and (b) of the same motionwalking. The features
fl, fr are 1 (yellow) iff the left/right foot is in front of the body and 0 otherwise. The resulting merged template
is depicted in (c). Here, gray areas indicate the value0.5, meaningdon’t care. Intuitively, the matrix can be
interpreted as:feet parallel, right foot in front, feet parallel, left foot in front, feet parallel.

each motion sequence. Consider for example two featuresfl, fr with fl indicating the left foot
being in front of the body andfr being 1 if and only if the right foot is in front of the body.
Given this set of features, a typical walking template for two different sequences of the same
length look likes Figure 6.4 (a) and (b). If we generalize to acommon motion template (also
calledclass template) given the two examples, we would learn a motion sequence as shown in
Figure 6.4 (c). Here, black and yellow cells reflect the value0 and 1 respectively. However, we
obtain a new value 0.5 visualized by the gray shaded boxes. This value represents the flagdon’t
care. The value 0.5 is obtained since exactly one feature at this time is 0 and the other is 1.
In the following, we will briefly describe the algorithm for learning a class templateCA for a
single activityA from a set of training examplesD. The algorithm for learning a class template
for a single activity can be summarized through the following steps (see also Algorithm 5):

1. Calculate the motion templates for all examples of this activity.

2. Take one of the motion templates, call it reference template, and align all remaining to this
one using dynamic time warping [124]. This procedure ensures that all other templates
have now the same length as the reference template.

3. Compute a new template as the average of all and store it.

4. Repeat the previous two steps for each motion template being exactly once the reference
template.

5. Replace the training data by the outcome of the calculated templates from the previous
step.

6. Repeat the whole process until no major difference betweenthe calculated templates ex-
ists.

Note that the averaging of the templates includes more complicated steps, but we refer to the
original work of Mülleret al. [109] for more details about learning a motion template.
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Algorithm 5 Learn Class Template

Input: D = (D1, . . . , Dn) // the set of training examples for activityA
Output: CA // class template for activityA

1: M0 = (M1, . . . ,Mn) = calculateMotionTemplates(D) // initial motion templates.
2: t = 0 // iteration
3: repeat
4: i = i+ 1
5: for i = 1, . . . , n do
6: Ti = Mt−1[i] // current reference template
7: for j = 1, . . . , n; j 6= i do
8: Tj = Mt−1[j].alignToReference(Ti)
9: end for

10: Mt = Mt∪ averageTemplates(T1, . . . , Tn)
11: end for
12: until (differenceBetweenTemplatesIn(Mt) < ǫ) || (t > tmax)
13: CA = averageTemplates(Mt)
14: return CA

Now, given the learned class template for each activity and anew motion sequence, we can
calculate a similarity between both. To do so, we compute a motion template of the actual
sequence and align it to each class template utilizing dynamic time warping. We furthermore
compute a distance score for each pair of templates. This score varies between0 and1. In-
tuitively, the value0 reflects a perfect match whereas a1 indicates a disparity for each feature
at each time between both templates. However, if this score is below a thresholdτ , the actual
motion sequence is said to belong to the same motion class as the class template.

Since we are only interested in the motion used for handling adoor with either the left or
the right hand we use features based on the pose and velocity of the hands only. More precisely,
we use a set of features describing whether the hand is at the level of the door handle, whether
it is raising, hold still or lowered, and finally whether the hand is moving towards the body or
away from it. An example of such a sequence is visualized in Figure 6.5. It shows a typical
motion while the user is opening a door (pulling towards him)using his right hand. The figures
labeled (a) trough (d) show intermediate snapshots of the motion at the highlighted time index.
In detail, Figure 6.5 (a) shows the initial situation where the user is approaching the door’s
handle using his right hand. In this case, the pattern in the features1, 2, and3 reflect the vertical
position of the right hand, whereas features7, 8, and9 describe the horizontal motion of the hand
away from the body towards the handle. The explicit handlingof the door is visualized in (b).
The corresponding pattern in the vertical velocity space (features4, . . . , 6) reflect the situation
where the hand’s vertical velocity is close to zero (since the user touches the handle) followed
by pushing the handle downwards in order to open the door. Subsequently, Figure 6.5 (c) shows
the part of the motion where the user pulls the door towards him. This can be seen in the features
7, . . . , 9. Finally, the user releases the door handle, resulting in a moving the hand downwards
again, as visualized in (d) through the features1, . . . , 3.

We learned the template for the activityhandling a door, which consists of the four sub-
classesopen left, close left, open right, close right, using 10 examples from a training data set
for each subclass. Based on a second validation data set, we selected the thresholdτ = 0.25 for
detecting the motion. Intuitively, we require a match in at least75% of the whole sequence be-
tween the learned template and the actual sequence. Using this threshold, we did not encounter
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b)
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Figure 6.5: Motion Template for a door opening sequence (middle image).Yellow and black blocks reflect the
corresponding feature being 1 and 0 respectively. The first three features describe if the right hand is at the level of
a typical door handle. Subsequently, the next three features describe if the right hand is being lowered, hold still,
or raised. Finally the last three features describe if the right hand is moving towards the body or way from it. The
highlighted parts are visualized by the images located at the left and at the right hand side of the motion template.
(a) approaching the door. (b) handling the door. (c) openingthe door (pull) and (d) releasing the door handle.

any false positiveson the validation data set. Within this process, we used datarecorded by
three subjects. The motion of two subjects was used for training, whereas the motion of the
third one was used for validation. Although the features used for detecting a door are quite
simple, we can reliably detect the point in time when the doorhandle was touched within1.5
seconds of the true event (we evaluated this using manually labeled ground truth). Therefore,
we can use the pose of the hand as an approximation of the location of the door.

Although one could utilize features based on the geometry ofthe feet during the motion
sequence as well, we realized in our experiments, that humans have a very high disparity in the
walking pattern when opening a door. Either the human stopped in front of the door, walked
constantly while opening it, moved forth and back to avoid the door and so on. One could
still utilize this information but this would lead to a separation of the classes into additional
subclasses based on the number of walking patterns. However, our intention was to use a small
set of simple features.

6.2.2 Stair Detection

To be able to reconstruct 3D trajectories within buildings,it is inevitable to detect vertical
movements of the user. Due to the high uncertainty in the height estimate of IMUs, the man-
ufacturer’s software assumes an environment consisting ofa single floor. When walking up
or down a staircase, the software “snaps” the human to the ground as indicated by Figure 6.6.
Therefore, one needs additional means for determining changes in thez coordinate. In our
approach, we achieve this by identifying stair stepping motions carried out whenever the user
walks up or down staircases. In principle, we could have employed the same motion template
approach as for the door handling events. However, motion templates are especially useful for
detecting complex activities (like door opening) at a coarse time resolution. In practical exper-
iments we found that during typical stair-climbing people need approximately0.5 seconds for
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a) b) c)

d) e) f)

Figure 6.6: Typical data obtained from the data suit while climbing up a stair. The left (brown) foot is placed on
the next step in (a), whereas the subject then moves his right(dark blue) foot onto the next step. The images labeled
(b)-(f) show how the software “snaps” the human to the groundwhile climbing up the next step of the staircase.

each stair so that the motion templates described above, which detect doors with an accuracy of
1.5 seconds, were not accurate enough to exactly determine the point in time when the foot is
placed onto a stair. Unfortunately, increasing the time resolution of the MT accordingly leads to
a high computational complexity due to the dynamic time warping. We therefore developed an
efficient and temporal substantially more accurate classifier for detecting the individual stairs
based on neural networks.

The goal of the following approach is to detectstair events, consisting of two subclasses
namelystair upandstair down. To achieve this, our method employs a sliding window consist-
ing of 5 frames that correspond to40.7 milliseconds. Within this window, we extract features
from the suit’s data. In more detail, we use the relative position of the feet and the toes as well as
the minimum and maximum acceleration resulting in a total of19 input features. We trained the
neural network using manually labeled training data employing SNNS [167] and RProp [128]
as learning functions. The neural network consists of21 nodes in the first layer (see Table 6.1),
12 nodes in the hidden layer, and3 nodes in the output layer. The latter nodes represent the three
classes “step up”, “step down”, and “other”, whereas the amount of neurons in the hidden layer
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F. No. Value F. No. Value
1 RF.zt - LF.zt 12 min(RF.zt−2:t+2, RT.zt−2:t+2, LF.zt−2:t+2, LT.zt−2:t+2)
2 RF.zt - LT.zt 13 max(RF.zt−2:t+2, RT.zt−2:t+2, LF.zt−2:t+2, LT.zt−2:t+2)
3 RT.zt - LF.zt 14 min(RF.Acc.xt−2:t+2, RT.Acc.xt−2:t+2)
4 RT.zt - LT.zt 15 max(RF.Acc.xt−2:t+2, RT.Acc.xt−2:t+2)
5 RF.Acc.xt 16 min(RF.Acc.zt−2:t+2, RT.Acc.zt−2:t+2)
6 RF.Acc.yt 17 max(RF.Acc.zt−2:t+2, RT.Acc.zt−2:t+2)
7 RF.Acc.zt 18 min(LF.Acc.xt−2:t+2, LT.Acc.xt−2:t+2)
8 LF.Acc.xt 19 max(LF.Acc.xt−2:t+2, LT.Acc.xt−2:t+2)
9 LF.Acc.yt 20 min(LF.Acc.zt−2:t+2, LT.Acc.zt−2:t+2)
10 LF.Acc.zt 21 max(LF.Acc.zt−2:t+2, LT.Acc.zt−2:t+2)
11 ‖(RT.xt-LT.xt)‖2

Table 6.1: Features employed in the neural network for step detection.Within this table “F. No”. is short for
“Feature Number”. Subsequently, “RF”, “RT”, “LF”, and “LT”is short for “Right Foot”, “Right Toe”, “Left
Foot”, and “Left Toe”. Finally, “Acc” is short for “Acceleration” and(t− 2 : t+2) denotes a window of5 frames.

was chosen as(21 + 3)/2. The training data was recorded by a person walking up and down
two different staircases twice and contains a total of56 stair events, covering slightly more than
two minutes. Once our predictor has detected a stair event, we estimate the height of each stair,
by calculating the difference between the two feet along thez-axis given the pose estimates
obtained from the data suit. Using this approach, we are ableto detect step events with an error
of 1.5 frames (≈ 12ms) with respect to a manually labeled ground truth.

Note that one could employ the neural network approach also for detecting door handling
events. We tested this in several experiments using the samedata sets also used for the motion
template approach. In all runs, the recall rate using the neural network was around 60%. How-
ever, the worst recall rate using motion templates was approximately 88% as will be shown in
the experimental section.

Up to now, we are able to detect when the user climbed up or downa staircase, and em-
ploying the motion templates, we are able to detect when the user toucheda door. However,
we do not possess any information of which door was handled. We therefore have to take care
of possible data associations, which we deal with by employing a multi-hypothesis-tracker as
described in the next section.

6.3 Multi Hypothesis Tracking

In this section we briefly review the Multi Hypothesis Tracker (MHT) as described by Reid [127]
for sensors providing only positive feedback. Subsequently, we derive the expressions needed
to compute the probabilities for a data association given detected door handling events. If the
user handles a door, we gain information about this door onlyand not about any other door in
the users neighborhood, which is different from tracking multiple targets with a laser scanner
for example. In the original paper by Reid, sensors providingonly this kind of positive feed-
back are called type2 sensors. There, any measurement can be either detected (assigned to an
existing track), marked as a false alarm, or be a new track. Since in our particular case the tracks
are static doors, we will call them doors in the remainder of this section, rather than tracks. As
described in Section 6.2.1 we select a threshold for detection in such a way, that we do not
have to model false positives. Note that we will discuss at the very end of the next section why
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including a model for handling false positives does not necessary improve the data association
in our case.

Since we do not model false positives, a measurement can onlybe interpreted asdetected
(when matched to an existing door) or as anew door. In the following, we assume that a hypoth-
esis consists of the current trajectory, the estimated locations of doors and the data association
between different doors. To derive the probabilities of individual measurement assignments we
start by reviewing the formulation of the Multi Hypothesis Tracker for type2 sensors.
Let Ωk

j be thej−th hypothesis at timek andΩk−1
p(j) the parent hypothesis from whichΩk

j was

derived. Let furtherΨj(k) denote an assignment that, based on the parent hypothesisΩk−1
p(j) and

the current measurementzk, gives rise toΩk
j . The assignmentΨj(k) associates the current mea-

surement either to an existing door or a new door. Given the probability of an assignment and
the probability of the parent hypothesisΩk−1

p(k), we can calculate the probability of each child hy-
potheses that has been created throughΨj(k). This calculation is carried out recursively [127]:

p(Ωk
j |zk) = p(Ψj(k),Ω

k−1
p(j) |zk)

Bayes+
=

Markov
η p(zk|Ψj(k),Ω

k−1
p(j)) · p(Ψj(k)|Ω

k−1
p(j)) · p(Ω

k−1
p(j)), (6.1)

with p(Ωk−1
p(j)) being the recursive term, i.e., the probability of its parent. Here, the factorη is a

normalizer. The leftmost term on the right-hand side after the normalizer is the measurement
likelihood. In our case of mapping indoor environments using human motion and activity, we
assume that a measurementzk associated with a doorj has a Gaussian probability density func-
tion (pdf) centered around the measurement predictionẑjk with innovation covariance matrix
Sjk, and

N (zk) := N (zk ; ẑ
j
k,S

j
k). (6.2)

Here, the innovation covariance matrix is the uncertainty of the door with respect to the cur-
rent trajectory and its derivation is described later in Section 6.4. We further assume the pdf
of a measurement belonging to a new door to be uniform in the observation volumeV with
probabilityV −1. Hence, we have

p(zk|Ψj(k),Ω
k−1
p(j)) = N (zk)

δV δ−1 , (6.3)

with δ being 1 if and only if the measurement has been associated with an existing door and
0 otherwise. The central term on the right-hand side of Equation (6.1) is the probability of an
assignment set,p(Ψj(k)|Ω

k−1
p(j)), which is composed of the following two terms: the probability

of detectionpdetkj and the probability of a new door. In our case the probabilityof a detection
is equal to choosing one of the current candidate doors, i.e., all doors within an uncertainty
ellipsoid. Therefore,

pdetkj := NC(x1:k,Ω
k−1
p(j))

−1, with (6.4)

NC(x1:k,Ω
k−1
p(j)) being the number of door candidates, assuming the trajectory x1:k within the

worldΩk−1
p(j) . Assuming the number of new doors following a Poisson distribution with expected

number of doorsλnew in the observation volumeV we obtain

p(Ψj(k)|Ω
k−1
p(j)) = pδ

detkj
· µ(1− δ;λnewV ), (6.5)
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where

µ(n;λV ) :=
(λV )n exp(−λV )

n!
(6.6)

is the Poisson distribution forn events given the average rate of events isλ in the volumeV .
Therefore, Equation (6.1) can be reformulated as

p(Ωk
j |zk) = p(Ψj(k),Ω

k−1
p(j) |zk)

Bayes+
=

Markov
η p(zk|Ψj(k),Ω

k−1
p(j)) · p(Ψj(k)|Ω

k−1
p(j)) · p(Ω

k−1
p(j))

Eq. (6.3)-Eq. (6.6)
= ηN (zk)

δV δ−1pδ
detkj

(λnewV )1−δ ·

exp(−λnewV )(1− δ)!−1p(Ωk−1
p(j)). (6.7)

Observing that(1 − δ)! is always 1 (sinceδ is ∈ {0, 1}) and noting thatexp(−λnewV ) can
be taken into the normalizerη (since it is constant for all hypotheses), we can finally rewrite
Equation (6.7) as

p(Ωk
j |zk) = η

(
N (zk) pdetkj

)δ
· λ1−δnew · p(Ωk−1

p(j)). (6.8)

So far, we can detect doors and stair steps and calculate the probability of a data association.
In the next section we address the remaining questions of ourSLAM procedure, namely the
detection of possible door candidates (i.e., loop closures), the calculation of the innovation
covariance, and the algorithms which are utilized to correct the trajectory.

6.4 Simultaneous Localization and Mapping

We address the simultaneous localization and mapping problem by its graph based formulation.
A node in the graph represents either a pose of the human (i.e., represented by the center of
the hip) or a location of a door whereas an edge between two nodes models a spatial constraint
between them. These spatial constraints arise either from incremental odometry, potentially
adjusted according to the stair heights estimated from stair climbing events, or by closing a loop
which corresponds to establishing a data association between two doors. Thus, the edges are
labeled with the relative motion between two nodes. To compute the spatial configuration of the
nodes which best satisfies the constraints encoded in the edges of the graph, we utilize a variant
of our optimization algorithm (see Chapter 4). Since the doorhandling activities do not give us
information about roll and pitch, we restrict our optimization problem to(x, y, z, ψ)T , with ψ
being the yaw. This allow us to adapt the fast 2D ((x, y, ψ)T ) version of our tree-based network
optimizer towards(x, y, z, ψ)T optimization and still maintain its computational properties. By
repeatedly performing this optimization whenever a new door has been detected and a new data
association has been established we can incrementally reduce the uncertainty in the current pose
estimate while processing the data.

Since we are only able to detect the fact that there is a door, we have to track different
possibilities of data association, namely whether the current detected door is one of the already
mapped doors or whether the door has not been perceived before. As already mentioned in
the previous section, we utilize multi-hypothesis tracking for keeping track of all possible out-
comes. To detect a potential loop closure (i.e., recognize apreviously seen door), we identify
all formerly detected doors which are within the uncertainty ellipsoid of the current pose by a
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Dijkstra projection of the node covariances starting from the current position. The innovation
covariance is directly used for calculating the likelihoodof the door as described in Equa-
tion (6.8). All doors being within3σ confidence of the current pose are considered as potential
loop closure candidates, and together with the possibilityof the current detected door being a
new door, lead ton+ 1 different outcomes, given the number of loop closure candidates isn.

For each of these association possibilities we create a separate graph, encode the selected
constraint and optimize it. The multi-hypothesis tree therefore grows exponentially in time
and pruning of this tree is mandatory to keep computational costs reasonable. In our case, we
utilize N-scan-backpruning as proposed by Cox and Hingorani [38], which works as follows:
it considers an ancestor hypothesis at timek − N and looks ahead in time to all its children
at the current timek (the leaf nodes). The probabilities of the children are summed up and
propagated to the parent node at timek − N . Given the probabilities of the possible outcomes
at timek−N , the branch with the highest probability at timek is maintained whereas all others
are discarded. Since in our case, a step in the MHT only ariseswhen a door has been detected,
this is identical to localizeN steps ahead in time (at door level). In our implementation, we do
not count a data association (step) in time if the only child of each hypothesis is the association
with a new dooror if the trajectory between two subsequent handling eventswas smaller than
1 m, reflecting the immediate closing of the same door after passing it. Thus we ensure that
at least one combination ofN data associations in time reflect anN step localization among
different and already partially mapped doors.

An example of the N-scan-back MHT algorithm is visualized inFigure 6.7. This example is
a snapshot from one of our experiments described in detail inSection 6.7. At the specific timet,
the human walked around the building leaving at the top exit and entered the building through
the main entry labeledA0 in 6.7 (a). Starting from the posex, where the current door was
detected, the uncertainty of the pose was back-propagated utilizing Dijkstra expansion. Since
we used the same uncertainty forx andy, the resulting ellipsoid is a circle. Note that due to
the back-propagation of the uncertainty the current pose isin the uncertainty region of the door
A0. For better visibility, only the doors being considered as candidates are shown with their
uncertainty regions. Therefore, only two data associations are possible in this case, namely
matching the current door withA0, which in this case is the correct association, or marking
it as a new door. Calculating the posterior probability of each association leads top = 0.597
for the casenew doorandp = 0.403 for the correct association. Note that in this situation,
a maximum likelihood approach selects the wrong association. However, as the human enters
the building and opens another door, given the previous association, different outcomes are
possible. Figure 6.7 (b) depicts the situation for the case that the previous decision wasnew door
and Figure 6.7 (c) shows the situation for the decisionmatch withA0. Given this sequence of
doors, the full posterior of the branchnew doorat timet sums up to0.3683 while the probability
for the branchmatch withA0 sums up to0.6317 (see Figure 6.7 (bottom row)). Here, an N-
scan-back of2 would be already sufficient to keep track of the correct data association, since
the MHT can decide to keepmatch withA0 at timet and discard the other branch.

As stated earlier, we selected a thresholdτ within the motion templates approach in such
a way that we do not need to model false positives. Note that modeling false positives would
“only” introduce another term in the MHT, namely aλFP similar toλnew. To understand why
including this model is suboptimal in our case consider the following. First of all, we will never
be able to distinguish between a single measurement of a doorand a false positive. To resolve
this ambiguity, the human has to handle a door at least twice (assuming that both events are
detected). Since a human typically does not handle the same door multiple times in a short
period of time, we would need to allow for an infinite N-Scan-back, which is computationally



6.4. Simultaneous Localization and Mapping 127

a) b) c)
Time: t t+ 1

xx

x

A0

B0

B1
B2

B3
C0

left as

new door new door

new door new door

new door

new door

door
matched

matchA0 matchA0

matchA0

p=0.597 p=0.597

p=0.597

p=0.403 p=0.403

p=0.403

· · · · · ·

p=0.195 p=0.131

matchB0 matchB1

matchB2 matchB3

matchC0

p=0.029 p=0.060

p=0.048 p=0.036

p=0.501

p=0.368 p=0.632

Figure 6.7: A snapshot from one of our experiments. The human re-enters the building through doorA0 (a).
Based on the MHT decisionnew doorandmatch withA0 different hypothesis are generated as shown in (b) and
(c). The probability for a match withA0 is lower than for the new door, which would be the wrong data association.
However, comparing the probabilities of all possible worldevolutions given the previous decision we see that the
probability of the branch “previously matched withA0” is now higher than “previously mapped to a new door”.
Thus, postponing the data association by only one step is (inthis example) already sufficient to keep track of the
correct data association.

infeasible. However, given any finite N-Scan-back, consider the three possible cases (excluding
the possibility of matching a measurement with an existing door).

1. λnew > λFP: Regardless of upcoming measurements, every false positiveis labeled as a
new door.

2. λnew = λFP: If we detect the same door within the N-Scan-back period at least once
again, we would choose the hypothesis that labeled it as “newdoor” first. If not, we
would choose one of both hypotheses by chance.

3. λnew < λFP: Only doors, that were handled multiple times (depending onthe ratio be-
tween both values)within the N-Scan-back period would be included in the map. All
others would be labeled as false positives and therefore discarded. In the worst case, the
N-Scan-back could be smaller than the minimum amount of times a door needs to be han-
dled. However, given any finite N-Scan-back, this would substantially reduce the chance
to detect loop closures and thus substantially decrease therobustness of the approach.

As can be seen, none of the cases would generally improve the data association in the multi
hypothesis tracker but increase the computational complexity due to the increased amount of
generated child hypothesis.
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Since we do not model false positives, each of those events will be either labeled as a new door
or matched to an already mapped one. However, the latter onlyhappens, if the false positive is
close to an existing door and the subsequent handling eventsmatch the current map quite well.
This, in return, would only impose a small error in the overall map. A door which was observed
only once, however, will have no effect on the trajectory optimization since no loop closures
are present. We will see in the experimental section, that this also had no effect on the room
segmentation.

6.5 Room Segmentation and Approximate Mapping

The output of the multi-hypothesis tracking can be used to generate an approximate map of
the environment. Assuming that doors separate rooms, we first cut the whole trajectory based
on the locations of individual doors. Thus, even if a door wasnot always detected or the user
moved through an open door, the trajectories are segmented into different rooms, given the spe-
cific door was detected at least once. Since steps have no effect on the segmentation, we also
obtain segments covering multiple floors (i.e., the hallway). The process of room segmentation
is also visualized in Figure 6.8 and Figure 6.9. The raw trajectory and the outcome of the MHT
process is shown in (a) and (b) respectively. In order to get all trajectories belonging to the same
room, we cluster the data in the following way: Each segment is augmented with a segment id,
depending to which door this segmented trajectory is connected to, and on which side of the
door it belongs to. This step is visualized in Figure 6.8 (c).Since this id is calculated incre-
mentally for each point starting from those directly connected to a door, a trajectory between
two doors is typically cut in half. Given the orientation of adoor, we now merge subsequent
segments which are connected to the same door and on the same side. We repeat the last step
until no change in the segment ids occur, i.e., until convergence (see Figure 6.8 (d)-(e)). Finally,
we merge segments which intersect with each other in order tocope with the situation that a
room has more than one door. The outcome of this process is shown in Figure 6.8 (f). In order
to seek for walls, we incrementally enlarge each segment oneafter the other until it touches the
extend of a segment belonging to another room or up to a threshold d, which was set to1.5m in
all experiments yielding an approximate map as shown in Figure 6.9 (a). The floor plan of the
same building is shown in Figure 6.9 (b).

To sum up, we build a modified Voronoi diagram with respect to the segmented trajectory.
We place an obstacle (wall) at every location having the samedistance to the closest point of a
trajectory belonging to a neighboring room. The differenceto the general Voronoi diagram is
that we also place an obstacle when we exceed a maximum distance to the trajectory. Note that
since we segment the trajectory according to different rooms, we also obtain a topological map
of the environment at the same time when calculating the approximate map.
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a) b)

c) d)

e) f)

Figure 6.8: Approximate map generation: The raw odometry is shown in (a)and the corrected trajectory is shown
in (b). The corrected trajectory is segmented based on the location of the individual doors. For each segment,
we obtain an individual id based on the door and its orientation (c). Segments connected to the same door and
on the same side are then merged. This process is repeated until convergence (d)-(f). Note that we also obtain a
topological representation of the environment. The estimated map given the segmentation plotted in (f) is shown
in Figure 6.9 (a).
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a) b)

Figure 6.9: Continuation from Figure 6.8. The outcome of the iterated segmentation is shown in Figure 6.8 (f).
We finally enlarge each segment incrementally and place a wall whenever it hits the extend of another segment or
exceeds a maximum distance (a). The floor plan of the same building is shown in (b) for comparison.

6.6 Overall System

Our approach is summarized by the pseudo-code in Algorithm 6. Given the odometry up to
the current point in timet, x1:t, the N-scan-back sizen and the current multi-hypothesis tree
Ω1:k = {Ω1, . . . ,Ωk}, with Ωj = {Ωj

j1
, . . . ,Ωj

jn
}, the algorithm works as follows. Note that

k is the current depth of the hypothesis tree and is increased only if there is ambiguity in the
data association of a door. First, we add a node (current poseof the hip) and an edge into
each graph of the current hypothesis at the current depthk and detect the activities at timet
in line 1-3. This is performed by using motion templates for detecting door handling events
and neural networks for detecting step activities as described in Section 6.2. If an activity is
detected and this activity is a stair step, we augment the odometry information of the recently
added nodes with our height estimate (lines 4-8). This height estimate is obtained by estimating
the height difference between the left and the right foot andincorporating if the current detected
step is a “step up” or a “step down”. If a currently detected activity is a door handling event, we
calculate for each hypothesisΩk

j at depthk potential loop closure candidatesCk
j using a Dijkstra

expansion starting from the corresponding current pose. Iffor all hypotheses no potential loop
closure candidate exists, the only explanation of this measurement is that it originates from a
previously unseen door, thus each of the current hypothesescan only include anew dooras
described by lines 16-19. In this case it is obsolete to adjust the hypotheses probabilities since
all probabilities are multiplied by the same factorλnew which would be normalized out later on.
In the case that at least one hypothesis at depthk has one potential loop closure candidate we
create a new set of children for all hypotheses (lines 21-22). The number of each set is equal
to the number of loop closure candidates plus the additionalone reflecting the association “new
door”. The latter (anew door) is added to one child of each hypothesis whereas the graphs
of the remaining children are augmented with the loop closure edges. The probabilities of the
individual hypotheses are calculated according to Equation 6.8 (lines 23-30). Subsequently, we
normalize the probabilities and perform the N-scan-back pruning as described in the Section 6.4.
Finally, we optimize the remaining hypotheses at depthk + 1 using our tree network optimizer
(see Chapter 4) and calculate the approximate map of the environment as specified by lines
31-35 and described in the previous section.
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Algorithm 6 Human Indoor Mapping

Input: measurements up to current timet: x1:t

Input: N-scan-back size:n
Input: hypothesis tree:Ω1:k

1: addNodeToEachHypothesis(xt)
2: addEdgeToEachHypothesis(xt−1,xt)
3: A = detectCurrentActivities(x1:t)
4: if stepActivity∈ A then
5: xt = estimateHeight(xt)
6: updateLastAddedNodeInEachHypothesis(xt)
7: updateLastAddedEdgeInEachHypothesis(xt−1,xt)
8: end if
9: if doorActivity∈ A then

10: kn = |Ωk| // number of hypothesis at depthk
11: v = 0 // number of all loop closure candidates
12: for j = 1, . . . , kn do
13: Ck

j = calculateLoopClosureCandidates(Ωk
j )

14: v = v + |Ck
j |

15: end for
// no candidates→ new doorfor all hypothesis

16: if v == 0 then
17: addDoorNodeToEachHypothesis(doorActivity.hand(xt))
18: addEdgeToEachHypothesis(xt−1, doorActivity.hand(xt))
19: else
20: for j = 1, . . . , kn do
21: vj = |Ck

j | // current number of candidates
22: {Ωk+1

1 , . . . ,Ωk+1
vj+1} = createChildren(Ωk

j , vj + 1)
// new door

23: Ωk+1
vj+1.addDoorNode(doorActivity.hand(xt))

24: Ωk+1
vj+1.addEdge(xt−1, doorActivity.hand(xt))

25: calculateProbability(Ωk+1
vj+1)

// loop closures
26: for i = 1, . . . , vj do
27: Ωk+1

i .addLoopClosureEdges(Ck
j (i))

28: calculateProbability(Ωk+1
i )

29: end for
30: end for
31: k = k + 1
32: normalizeProbabilities(Ωk+1)
33: nScanBackPruning(Ωk+1−n:k+1, n)
34: optimizeEachHypothesis(Ωk+1, numIterations)
35: calculateApproximateMapForEachHypothesis(Ωk+1)
36: end if
37: end if
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6.7 Experiments

The following sections show the results obtained with our currently implemented system. First,
we will present our results on trajectory estimation based on human motion and activity and
evaluate the error of our estimated door locations with respect to a manually measured ground
truth. We calculate the error by first estimating the best transformation between the estimated
map and the ground truth throughout all floors. This transformation is then used to calculate
the error (mean and std) between the estimated door locations and the ground truth map. In
Section 6.7.2, we finally present our results on approximateand topological mapping. Videos
of the experiments can be found on the Web [110]. They show theincremental update of the
final best hypothesis. Our current system, though not fully optimized, is able to perform an
incremental update at a rate of 10Hz on an Intel i7 1.7 GHz laptop.

We evaluated the approach described in this chapter on different data sets in which differ-
ent people walked in various buildings. The first set of experiments was performed covering
multiple floor levels while the second set of the experimentscontains data recorded by differ-
ent humans covering a single floor level partially in the samebuildings. All experiments were
performed using an N-scan-back of 3 andλnew = 0.03, which is approximately the number
of doors relative to the area covered by the building. In general, λnew depends on the type
of building. For example, in a hotelλnew should be significantly higher than in a warehouse.
However, we found that small changes to this parameter do notlead to substantially different
results. Thus, the remaining free parameter is the covariance matrix of the odometry used for
the Dijkstra expansion. Recall that we have no information about the current magnetic field.
The covariance matrix, therefore, also reflects the magnetic disturbances present in the building,
since high magnetic field errors result in a high pose error estimation from the data suit. We
will show the outcome of the maximum likelihood hypothesis in the upcoming experiments.

6.7.1 Trajectory Estimation

In this section, we present the results of several experiments covering single as well as multiple
floors of different buildings. Note, that all upcoming plotsof single levels of the buildings also
contain all points up to the middle of the next and the previous floor respectively. Please also
note that the raw data (without the step detection) containsno information along thez-axis with
respect to different floors, i.e., only a single floor level ispresent.

The first experiment contains a trajectory of approximately2.2 km including222 door han-
dling actions and is shown in Figure 6.10 and in Figure 6.11. The building has three floor levels,
namely the first floor, an intermediate floor level containingthe main entrance, and the second
floor. Since the intermediate level contains only the main entrance door, we omitted to plot this
floor separately for better readability. We used a variance of 0.03m per meter inx andy and a
variance of0.1m per meter along thez axis. Our approach reliably detected215 out of the222
door handling events with one false alarm. The average errorof the estimated door locations
is 0.31m±0.17m wrt. a manually measured ground truth. We detected 106 out of 116 stairs,
missing 7 stairs down and 3 stair up and had one false alarm. The difference in the calculated
stair size between up and down is approximately3.5 cm. The raw odometry trajectory is de-
picted in Figure 6.10 (a). Although no floor level information is present in the raw data, the
raw odometry trajectory is already quite accurate. This results from the fact that the building
contains less metal structure compared to modern buildingsso that we obtained only small mag-
netic disturbances. As can be seen in the next experiments, larger disturbances typically lead to
higher pose errors. The raw trajectory including our step detection is plotted in Figure 6.11 (a).
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The maximum-likelihood map estimated by our approach is depicted in Figure 6.11 (b). For
better comparison, we also segmented the trajectory for different floor levels and compare them
to floor plans generated by the architect of the same buildingas shown in Figure 6.10(b)-(e).
The alignment for all floors was performed based on the three middle doors of the first floor.

The data for the second experiment was recorded in a typical university building containing
several floors and including small seminar rooms as well as big lecture rooms. The trajectory is
approximately2.85 km long covering three floor levels. This experiment is challenging for two
reasons. First, disturbances rising from the metal structure of the building itself and from walk-
ing closely to chairs and tables lead to a high pose error as can be seen in the raw data depicted
in Figure 6.12 (a). Second, the first and the second floor are nearly identical on one side of the
building which results in many potential loop closure candidates. Compared to the first experi-
ment, this building contains in total five different staircases. Two staircases are present in each
of the two lecture halls (see Figure 6.13 (b) left part) connecting the first floor and the second
floor, whereas the main staircase connects all three floor levels. In this experiment, we used a
variance of0.1m per meter in all directions, i.e.,x, y, andz. The raw trajectory including the
steps detected by our algorithm is plotted in Figure 6.13 (b). The result of our approach com-
pared to the floor plans of this building are shown in Figure 6.12 (b)-(d). Finally, the maximum
likelihood estimation of the whole building is depicted in Figure 6.13 (f). In this experiment
we detected175 out of178 door handling events with an average error of1m±0.41m. We also
have one false alarm at the third floor which originates from the user moving a chair away in
the library which was blocking his path. Regarding the stair detection we missed62 out of473
stairs (42 stairs up and20 stairs down). The average difference between the calculated stair
heights is1.3 cm.

The third experiment was recorded in a university building consisting of five floors and con-
taining a substantial amount of metal structures. Here, themagnetic disturbances did not even
allow for a proper initial calibration of the data suit. Thishad a severe influence on the estimated
raw odometry trajectory. We intentionally included this experiment to show the robustness of
the current approach even in the context of substantial disturbances. Since our assumption of a
Gaussian error in all degrees of freedom is highly violated (for example, one staircase is rotated
by 45 degrees in the raw odometry data) we still were able to approximately recover the true
trajectory although with one misaligned door (see Figure 6.14 (b)). This door, which is marked
by an arrow in the figure, is wrongly labeled as a new door. As inthe previous experiment, we
used an innovation of0.1m per meter along all axis. The total distance traveled in this build-
ing is approximately1.46 km and contains135 door handling events from which our approach
detected126. It furthermore resulted in one false alarm in the lower leftcorner of the ground
level. The average error of our estimated door locations is0.67m±0.40m. Regarding the step
detection, we were able to detect271 out of 280 stairs, missing7 stairs up and2 stairs down.
The calculated stair size for the class “stair down” was on average4 cm higher than for the class
“stair up”. The raw trajectory is depicted in Figure 6.14 (a)and Figure 6.15 (a) together with the
raw steps and doors detected by our algorithm. The resultingmap estimated by our approach
is depicted in Figure 6.15 (b). The individual floors plottedon top of the floor plan are shown
in Figure 6.14 (b)-(f). Note that the estimate of the first floor is slightly suboptimal due to the
severe error in the raw data yielding a small drift along thex-axis between the different levels.
Since some of the doors were locked, we were not able to enter all rooms. The corresponding
doors appear to be visually not connected to the trajectory in Figure 6.14(b)-(f). This originates
from the fact, that the user was not able to pass through the corresponding doorways, i.e., door
positions are obtained by the hand pose handling the door whereas the trajectory is given by the
position of the user’s hip.
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a) b) c)

d) e)

Figure 6.10: Outcome of the first experiment: (a) the raw odometry trajectory estimated by the data suit. The
maximum likelihood estimation of the first floor and the top floor using our approach are shown in (b) and (c), and
aligned to a floor plan in (d) and (e) respectively. A perspective view of the data is shown in Figure 6.11. Note that
we omit to draw the labels of the axes in figures (b)-(e) for better readability.
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a)

b)

Figure 6.11: Perspective view of the outcome for the first experiment. Theraw odometry trajectory augmented
with the raw detection of stairs and doors is shown in (a). Note that the elevation in (a) is obtained as the difference
between the altitude of the feet in the raw data given our classifier detected a step event (i.e., the suit provides only
2D data a shown in Figure 6.10 (a). A 3D plot of the corrected trajectory estimated by our approach is shown
in (b).
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a) b)

c) d)

Figure 6.12: The second experiment was performed in a typical Universitybuilding containing several small
seminar rooms as well as two big lecture rooms. The raw odometry data is depicted in (a), whereas the different
floor levels of our maximum likelihood estimate plotted on top of the floor-plans of the building are shown in
(b)-(d). A perspective view of the data is shown in Figure 6.13. Again, we omit to draw the labels of the axes in
figures (b)-(d) for better readability.
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a)

b)

Figure 6.13: Perspective view of the outcome for the second experiment. The raw odometry trajectory including
the uncorrected location of stairs and doors is depicted in (a). The maximum likelihood estimate of the whole
building using our approach is shown in (b).
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a) b)
same doors

c) d)

e) f)

Figure 6.14: The third experiment was performed in a building containinga substantial amount of metal structure.
This introduced severe errors in the odometry estimate provided by the data suit, especially when walking up and
down the staircase between the first and the second floor. The raw odometry is depicted in (a). Our maximum
likelihood solution of the individual floors is shown in (b)-(f). The high errors in the raw data led to a wrong data
association in the first floor (a), where the left door marked with the arrow was wrongly labeled as anew door.
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a)

b)

Figure 6.15: Perspective view of the outcome for the third experiment. The raw odometry trajectory including the
uncorrected location of detected stairs and doors is depicted in (a). Note the two instances of the staircases which
are rotated by approximately 45 and -40 degrees in the raw odometry trajectory estimated by the suit (a) due to the
high disturbances in the magnetic field. The corresponding maximum likelihood estimate of the whole building
using our approach is shown in (b).
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a) b)

Figure 6.16: Outcome of the fourth experiment. The raw odometry trajectory is shown in (a) and the corrected
one is visualized in (b). The respective parts of the trajectory inside the building are shown in Figure 6.17.

We also performed an extensive set of two-dimensional experiments (i.e., covering only a single
floor level) with different subjects than in the first three experiments.

The fourth experiment was recorded in the same building as the first one. This time, the
trajectory was approximately1.6 km long including133 door handling events. Our approach
reliably detected125 out of the133 events with an average error of0.5m±0.24m using the same
parameters as in the first experiment. The raw odometry trajectory is shown in Figure 6.16 (a)
and the corrected one is visualized in Figure 6.16 (b). This experiment also contains several
loops around the building. The parts of the trajectory whichwere recorded inside the building
are shown separately in Figure 6.17 (a) and (b). The latter includes the result of our approximate
mapping algorithm and therefore also contains the estimated locations of walls.

The fifth experiment contains a trajectory of approximately1.3 km and was obtained by
walking inside the same university building as in the secondexperiment. Again, we intention-
ally walked closely around rows of tables and chairs. The magnetic disturbances led to a high
pose error, as can be seen in the raw odometry trajectory (seeFigure 6.18 (a)). As in the sec-
ond experiment, we used a variance of0.1m per meter along all dimensions. Although the
initial odometry differs up to30m for the same place, we were able to correct it as shown in
Figure 6.18 (b). In this experiment, we detected all 63 door handling events with an error of
0.61m±0.17m.

The final experiment was recorded in a typical office environment. For this experiment we
used a dataset recorded by Xsens. The raw odometry trajectory is shown in Figure 6.19 (a)
and the corrected trajectory using our approach is shown in Figure 6.19 (b). The trajectory is
approximately0.4 km long and we detected24 out of27 door handling events by using the same
parameters as in the previous one. However, this experimentwas recorded by a different team
and we do not have ground truth data of the door locations but afloor plan of the building (see
Figure 6.19 (d) or Figure 6.9 (b) on page 130).

The outcome of all experiments together with the parametersused are also summarized in
Table 6.2. Note that the 2D experiments were performed without the step detection algorithm.
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a) b)

c) d)

Figure 6.17: The part of the fourth experiment which was recorded inside the building. The raw odometry trajec-
tory is shown in (a) and the corrected one using our approach is visualized in (b). The latter also shows the result of
our approximate mapping algorithm. Since we segment the trajectory according to different rooms, we also get the
topological representation of the building. This is visualized in (c) using three colors in total. The corresponding
floor plan (d) has been colored accordingly for better readability.
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a) b)

c) d)

Figure 6.18: The raw odometry trajectory of the fifth experiment is shown in (a). The corrected trajectory including
the approximate locations of walls using our approach is visualized in (b). Again, we also obtain a topological
representation of the environment given our segmentation approach. The topological representation using three
colors in total is shown in (c). The floor plan of the same building is shown in (d) and has been colored respectively
for better visualization.
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a) b)

c) d)

Figure 6.19: The sixth experiment. The raw odometry trajectory and the corrected one are shown in (a) and (b),
respectively. The topological representation is shown in (c) and the corresponding floor plan is shown in (d).

Experiment Trajectory No. of Parameters Building
No. length floors λnew N σ2

xy σ2
z id

1 2.2 km 2 0.03 3 0.03 0.1 079
2 2.85 km 3 0.03 3 0.1 0.1 101
3 1.46 km 5 0.03 3 0.1 0.1 106
4 1.6 km 1 0.03 3 0.03 0.1 079
5 1.3 km 1 0.03 3 0.1 0.1 101
6 0.4 km 1 0.03 3 0.1 0.1 Xsens

Experiment Door detection Step detection Error of estimated Subject
No. Recall rate FP Recall rate FP door locations id
1 0.968 1 0.914 1 0.31m±0.17m A
2 0.983 1 0.869 0 1m±0.41m A
3 0.933 1 0.968 0 0.67m±0.40m A
4 0.94 0 n/a n/a 0.5m±0.24m B
5 1 0 n/a n/a 0.61m±0.17m B
6 0.889 0 n/a n/a n/a C

Table 6.2: Summary of all experiments. The recall rate is calculated asthe ratio of true positives versus the actual
number of events. Here, FP is short for false positives and N is short for N-Scan-back.
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Figure 6.20: Outcome of our approximate and topological mapping algorithm for the second experiment. We
omit the plotting of the rooms extends, as the perspective view of the 3D structure in combination with outer walls
would render the image black. The floor plans on the right handside show the individual floors of the building (see
also Figure 6.12 and Figure 6.13) and are colored with respect to the outcome of our approach for better visibility.

6.7.2 Room Segmentation and Approximate Mapping

In this section we show our results of our room segmentation and approximate mapping al-
gorithm for floors of different buildings. Figures 6.17, 6.18, and 6.19 show typical outcomes
of our approach and the building’s floor plans respectively.Note that our mapping technique
segments the trajectory into different rooms. We thereforecan calculate both, a geometrical
and a topological map. The topological maps colored with respect to different rooms (using
three different colors in total) are shown in (c) of Figures 6.17, 6.18, and 6.19. The correspond-
ing floor plans have been manually colored and are shown in (d)of the same figure. As can
be seen, there exists a high visual correlation between the estimated floor plans and the real
ones. Errors mainly arise from rotational errors as can be seen in the bottom left part of Fig-
ure 6.18 (b)+(c). These rotational errors, however, can be corrected by including an additional
loop around the building from the outside or inside as demonstrated in Figure 6.12. The walls
within the map of Figure 6.18 (b)+(c) are present since all experiments were performed using
a maximum distance ofd = 1.5m as described in Section 6.5. Figure 6.20 shows the outcome
of our segmentation approach for the second experiment. Here, we omit to plot the walls since
the perspective view of the 3D structure in combination withthe outer walls would render the
figure completely black. However, the outcome of our segmentation algorithm also provides
the topological structure of the building which accuratelyresembles the true layout as can be
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seen by comparing it with the corresponding floor plans of thesame floor. These experimental
results demonstrate, that our approach is robust and can be applied in different environments
providing accurate results.

6.8 Related Work

The problem of tracking the correct data association [75] aswell as human indoor navigation
and localization has recently become an active research field [96, 133, 99, 35]. A number of
different sensors have been employed and different kinds oflocalization techniques have been
used. One of the first approaches in this area has been proposed by Lee and Mase [96], who
employ wearable accelerometers and other sensors, i.e., a digital compass and a velocity sen-
sor, to recognize when humans perform specific activities and change their locations in indoor
environments. They integrate the accelerometer data over time and estimate the position of
humans in a known environment based on higher level descriptors such asstanding, 2 steps
north, or 40 steps eastetc. The field of human indoor navigation and localization istherefore
closely related to activity recognition using accelerometer data. Bao and Intille, [14] as well as
Ravi et al. [126] have presented approaches to predict certain low level activities likewalking,
standing, running, sit-ups, and others using features from raw accelerometer data and avari-
ety of different learning algorithms. However, they do not employ this information for indoor
positioning. Schindleret al. [133] utilize an accelerometer together with an infrared proximity
sensor mounted on a pair of headphones to detect when a human is passing through a doorway.
In this work, the authors are able to construct topological maps, where rooms are represented
by single nodes and edges represent the path in steps betweendoorways. For building these
maps and for detecting loop closures, the human user has to indicate by gesture which door
was passed, i.e., giving each door a unique identifier via theinfrared proximity sensor. They
furthermore apply a Bayesian filtering scheme to localize theperson within the resulting map.

In the last years, low-cost inertial measurements units (IMU) based on MEMS have become
available and many researchers use such sensors for pedestrian localization, either alone or in
combination with other sensors. Foxlinet al. [51] incorporate a zero velocity update allowing to
estimate the users trajectory using an extended Kalman filter. Borensteinet al. [20] use a highly
precise IMU also combined with zero velocity updates and obtain an accurate dead reckoning
odometry. Woodmanet al. [163, 164] as well as Wanget al. [161] include additional infor-
mation using WiFi. Both research groups employ a particle filter to track possible trajectories
and calculate the weights of the particles based on the WiFi signal strength. Fischeret al. [48]
discuss the possibility of using ultrasound sensors to reduce the error introduced by the MEMS
sensors and present simulation results. Felizet al. [46] utilize a neural network to estimate the
step size using a single IMU and thus estimate the odometry. Coley et al. [37] use wavelets
to detect steps using gyroscopes only. In the work of Tothet al. [154], a prototype for pedes-
trian dead-reckoning and their general concept of sensor fusion is discussed. The HeadSLAM
approach by Cinaz and Kenn [35] employs a laser scanner together with an IMU mounted on a
helmet. They use the IMU sensor to project the laser scans into a horizontal plane in a global
coordinate system and employ a variant of GMapping [61] for mapping. In particular, they
incorporate a simplified motion model with two modes. Whereasthe first mode corresponds
to the activity walking and assumes constant velocity, the second mode represents the situation
that the person is standing still and assumes zero speed. An overview over existing techniques
can also be found in [47].
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6.9 Conclusion

We presented a novel approach to accurately estimate the 3D trajectories of humans based on
data gathered with a motion capture suit. Our approach extracts two different activities from the
motion data, namely door handling and stair climbing events. We consider the trajectory of the
person and the height estimates of our step detection algorithm as motion constraints. The door
handling events detected using specific motion templates are used as landmarks within a graph-
based SLAM approach. To cope with the high data association uncertainty, we employ a multi-
hypothesis tracking approach. Additionally, our method can create approximate geometrical as
well as topological maps of the environment based on the estimated trajectory and activities.
Our system has been implemented and successfully tested on real data recorded with different
subjects in several buildings on a university campus as wellas in a typical office environment.
The experimental results demonstrate that our approach is able to robustly keep track of the
true data association and accurately estimates the trajectory taken by the person. Furthermore,
the resulting geometrical as well as topological maps accurately resemble the corresponding
environments.
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Chapter 7

Conclusions and Outlook

A fundamental prerequisite for a sensor system, whether it is mounted on a robot or integrated
into the garment of the human, is knowledge about the currentstate. In state-of-the-art robotics,
the current state includes also the information about the current location. This information
allows robots to perform navigation tasks autonomously or general sensor systems (not nec-
essarily mounted on a robot) to assist humans in their mission. However, robots as well as
other non-robotic embedded sensor systems (i.e., based on the data suit) are only envisioned as
useful when the overall system is robust, small, and is able to operate autonomously over an
extended period of time without the need of human interference. Specially, flying robots must
be equipped with a high level of autonomy. Here, the complexity of the robot makes is hard to
remotely steer it, in particular in confined indoor locations where a good quality of a radio link
cannot be guaranteed. Additionally, given the limited payload and high time constraints, this
imposes several challenges for the underlying algorithms.

To obtain a estimate of the current state, it is inevitable toeither use an existing map of the envi-
ronment or to build a map during the mission of the agent (i.e., robot or human). Especially in
indoor environments, a map of the building is not (readily) available in most of the cases. Since
the map has to be build on-line, efficient mapping techniquesare needed in order to correct for
sensor noise. Simultaneous localization and mapping (SLAM) aims to estimate the current state
of the agent and simultaneously build a map of the environment. Using a graph-based represen-
tation allows us to divide such systems into two parts, namely the front-end and the back-end.
The main gaols of the front-end SLAM system include determining the incremental motion
and detecting loop closures. In other words, the front-end calculates the nodes and edges of
a graph. Optimizing techniques, namely, algorithms estimating the configuration of the nodes
which minimizes the overall error are called the back-end ofa SLAM system, respectively.

In this thesis, we developed an efficient graph-based optimization technique which allows a
system to efficiently correct for odometry errors after detecting loop closures. We have demon-
strated that this back-end system calculates a minimum-error configuration orders of magnitude
faster than other state-of-the-art systems without any loss in accuracy. We achieved this by
introducing a novel tree parametrization which divides theoverall optimization problem into
smaller sub-problems. We furthermore presented an extension to our approach which allows
for efficient graph optimization in 3D. We also presented an approach for node reduction. This
yields an optimization technique with an computational complexity being dependent on the
space the robot explored and not the time the robot spent in the environment. Our proposed
algorithm is a general framework which can be used with a variety of SLAM front-ends.
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Autonomous flying robots are envisioned as one of most important robotic systems during these
days. Such robots can assist humans in search and rescue missions as well be used as a remote
eye where wheeled robots cannot operate. We developed a navigation system for autonomous
indoor flying using a quadrotor robot. Using our graph-basedoptimization back-end, we built
a SLAM front-end which meets the demanding requirements on high accuracy and low compu-
tational complexity which is needed for such an embedded system. We furthermore developed
techniques which allows the flying robot to autonomously reach desired locations and avoid
obstacles entering the robot’s field of view. We have shown inan extensive set of experiments,
that our developed platform is able to robustly operate in structured indoor environments and
build accurate maps (2D as well as 3D) of the area the robot is operating in.

However, flying platforms are only one possibility on how to assist humans. Especially in the
context of search and rescue missions, it is envisioned thatthe knowledge about the pose of
the rescue team (e.g., firefighter) will help to save lives. Since scenarios where such teams are
operating in, prevent the usage of light dependent sensors like cameras or laser scanners (e.g.,
due to smoke) we developed a mapping technique based on humanactivity and motion only.
Here, we used human activities, like opening or closing doors, and treated them as landmarks
in a feature-based SLAM system. Again, our graph-based optimization was used as the back-
end of the overall system. We have demonstrated in several experiments, that we are able to
accurately recover the 3D trajectory of the agent and that wecan build approximate geometrical
as well as topological maps of the environment which resemble the floor plans of the building
with a remarkable accuracy. The detected activities are passive, i.e., the agent does not need to
learn specific gestures of commands and can concentrate himself on his mission. Therefore, we
believe that our proposed algorithm will be helpful during daily life of rescue workers.

In summary, all developed algorithms were extensively tested using real world data. We demon-
strated that our graph optimization technique is a robust and fast error minimization algorithm
intended to be used as the SLAM back-end. We furthermore developed a navigation system
enabling fully autonomous indoor flying using a quadrotor robot. Finally, we developed an effi-
cient and robust approach for simultaneously localize a human and map the indoor environment
employing the motions of the human as the only sensory input.We believe, that the presented
techniques will allow to build systems that can be used in everyday work improving the work
quality of humans and that are helpful for a variety of applications, including search and rescue,
potentially helping saving lives.

In spite of our promising results presented in this thesis there are many possibilities on how to
extend the presented solutions. Within our quadrotor navigation system, we use a laser scanner
for perceiving the environment only. One possibility wouldbe to add additional sensors, like
cameras or radar and fuse the overall information. This would improve the robustness of the
vehicle and extend it’s autonomous capabilities to complexand highly cluttered environments.
Another possibility is to learn the dynamic model of the flying robot. This would allow the
quadrotor to perform impressive maneuvers using on-board sensors only, which currently are
only possible with an external, fast, and highly accurate camera tracking device. Another pos-
sibility is to extend the quadrotor’s operational environment from air to air and water. Although
diving with a quadrotor would be restricted to a few meters only it opens a highly interesting
research question. How should a navigation system be designed and which sensors must be
used in order to allow robust and fast autonomous flights as well as underwater missions?
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Our approach to map indoor environments based on human activity uses multi-hypothesis track-
ing to deal with the high data association. Given any N-scan-back with a finite N, a human could
walk a sufficiently long trajectory, which would lead to a suboptimal data association. Here, one
could further investigate this problem in order to find a solution which is more robust than the
multi hypothesis tracker and still computational feasible. Clearly, one could imagine including
more activities. One possibility would be to extend the set of activities from passive to active
ones. In other words, the subject would explicitly perform an activity, like touching a wall, in
order to improve the results. Although motion templates have been shown to be a good frame-
work to learn door handling events they are computationallyvery intensive. Thus the question
arises if there exists another technique for learning motion patterns which takes much less cal-
culation time. Another possibility to extend the current work is the usage of more raw data from
the inertial measurement units, especially earth-magnetic field measurements. We believe that
this information could be employed as landmarks, improvingthe raw odometry estimate.

Finally, one could extend the work by combining the navigation system of the quadrotor with
the map estimate of the subject. A possible scenario would bethat both agents are exploring the
same environment, or that the quadrotor is estimating a map of the building by flying outdoors
around it whereas the human is building an approximate map indoors. An interesting question
here arises for the path planning. In more detail, one could address the question on how to guide
the quadrotor to maximize the probability that the flying robot would perceive the human with
his sensors, e.g., through a window. This would generate additional loop closures and improve
the overall map build by the two agents.
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