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Abstract—Learning maps is one of the fundamental tasks
of mobile robots. In the past, numerous ef cient approaches
to map learning have been proposed. Most of them, however,
assume that the robot lives on a plane. In this paper, we
consider the problem of learning maps with mobile robots
that operate in non-at environments and apply maximum
likelihood techniques to solve the graph-based SLAM problem.
Due to the non-commutativity of the rotational angles in 3D,
major problems arise when applying approaches designed for
the two-dimensional world. The non-commutativity introduces
serious dif culties when distributing a rotational error over a
sequence of poses. In this paper, we present an ef cient solution Fig. 1. A simulated trajectory of a robot moving on the surfata sphere.
to the SLAM problem that is able to distribute a rotational error ~ The left image shows an uncorrected trajectory and the righge depicts
over a sequence of nodes. Our approach applies a variant of the corrected one (approx. 8,600 constraints, 100 itersitials).
gradient descent to solve the error minimization problem. We

implemented our technique and tested it on large simulated and . : . ) .
real world datasets. We furthermore compared our approach to in 3D. One way is to ignore the non-commutativity of the

solving the problem by LU-decomposition. As the experiments rotational angles. In this case, however, the algorithmkesor
illustrate, our technique converges signicantly faster to an only in case of small noise and in small environments. A
accurate map with low error and is able to correct maps with  few maximum likelihood mapping techniques have been
bigger noise than existing methods. proposed for the three-dimensional space [9], [12], [15].
l. INTRODUCTION Some approaches ignore the error.in pitch and roll [9]
) . whereas others detect loops and divide the error by the
Learning maps has been a major research focus iy mper of poses along the loop (weighted with path length,

the robotics community over the last decades and is Ofg i [12]). An alternative solution is to apply variants of

ten referred to as the simultaneous localization and mapse approach of Lu and Milios [10] and to correct the whole

ping (SLAM) problem. In the literature, a large Varietynetwork at once [15].

of solutiqns to this problem can be foung. In this paeer, The contribution of this paper is a technique to ef ciently
we consider the popula_r and so-called graph-_baseq istribute the error over a sequence of nodes in all six
“network-based” formulation of the SLAM problem in which §imensions X, y, z, and the three rotational angles

the poses of the robot are modeled by nodes in a graphy " s enables us to apply a variant of gradient descent
Constraints between poses resulting from observations 9f oder to reduce the error in the network. As a result
from odometry are encoded in the edges between the nodg§; 4nnroach converges by orders of magnitudes faster than
The goallof algorithms to solve th|§ problem is to nd Bthe approaches mentioned above to low error con gurations.
con guration of the nodes that maximizes the observationg motivating example, consider Figure 1. It depicts a
likelihood encoded in the constraints. ~_trajectory of a simulated robot moving on the surface of a
In the past, this concept has been successfully applied [3here The left image depicts the input data and the right
[41, [71, 8], [9], [10], [12], [13], [15]. Such solutions gy e the result of the technique presented in this paper.
an iterative error minimization techniques. They correct Thq remainder of this paper is organized as follows. After
either all poses simultaneously [7], [9], [10], [15] or penh  giqcyssing related work, we explain in Section Ill the graph
local updates [3], [4], [8], [13]. Most approaches have beef,qaq formulation of the mapping problem as well as the
designed for the two-dimensional space where the robot k%y ideas of gradient descent in Section IV. Section V
assumed to operate on a ple}ne [3], [4]. [7]’_ [10], [13]. Amon,%xplains why the standard 2D approach cannot be used in
all these approaches, multi-level relaxation [4] or OIson'3p an introduces our technique to correct the poses given a
algorithm [13] belong to the most ef cient ones. network of constraints. Section VI analyzes the complexity

In the three-dimensional space, however, distributing ag or approach. We nally present our experimental results
error between different nodes of a network is not straightz, Section VIL.

forward. One reason for that is the non-commutativity of
the three rotational angles. As a result, most approaches Il. RELATED WORK

that provide good results in 2D are not directly applicable A popular approach to nd maximum likelihood (ML)

All authors are members of the University of Freiburg, Departimef maps is to apply least square _error minimization techniques
Computer Science, 79110 Freiburg, Germany based on a network of relations. In this paper, we also




follow this way of describing the SLAM problem. Lu and gradient descent allows us to correct larger networks than
Milios [10] rst applied this approach in robotics to addses most state-of-the-art approaches.

the SLAM problem using a kind of brute force method.

Their approach seeks to optimize the whole network at once. Ill. ON GRAPH-BASED SLAM
Gutmann and Konolige [7] proposed an effective way for The goal of graph-based maximum-likelihood mapping
constructing such a network and for detecting loop closurédgorithms is to nd the con guration of nodes that max-
while running an incremental estimation algorithm. Howardmizes the likelihood of the observations. For a more peecis
et al. [8] apply relaxation to localize the robot and to buildformulation consider the following de nitions:

a map. Ducketet al. [3] propose the usage of Gauss-Seidel X is a vector of parametergx; Xn)T which
relaxation to minimize the error in the network of consttain describes a con guration of the nodes.

In order to make the problem linear, they assume knowledge i represents a constraint between the nadesd j

about the orientation of the robot. Freseal. [4] propose based on measurements. These constraints are the edges
a variant called multi-level relaxation (MLR). It applies in the graph structure.

relaxation based on different resolutions. Recently, ®Iso ji is the information matrix capturing the uncertainty

et al. [13] presented a novel method for correction two-  of ji.
dimensional networks using (stochastic) gradient descent fji (X) is a function that computes a zero noise obser-
Olson's algorithm and MLR are currently the most ef cient vation according to the current con guration of nodes.
techniques available in 2D. All techniques discussed so far It returns an observation of nodefrom nodei.
have been presented as solutions to the SLAM problem in Given a constraint between nodeand nodej, we can
the two-dimensional space. As we will illustrate in this pap de ne the errore; introduced by the constraint and residual
they typically fail to correct a network in 3D. ri as

Dellaert proposed a smoothing method called square root gi (x) = fji (x)
smoothing and mapping [2]. It applies smoothing to corre%

i = ri(x): 1)

the poses of the robot and feature locations. It is one t the equilibrium pointg; is equal to 0 sincé;; (x) = i .

the few techniques that can be applied in 2D as well 40 this case, an observation perfectly matches the current
gon guration of the nodes. Assuming a Gaussian observation

in 3D. A technique that combines 2D pose estimates wit . o L
N P error, the negative log likelihood of an observatign is

3D data has been proposed by Howatdal. [9] to build

maps of urban environments. They avoid the problem of ) _ 1. NT e )

distributing the error in all three dimensions by corregtin Fii () 2 (i 6 i) i (e i) ()

only the orientation in the; y-plane of the vehicle. The roll I ()T i (x): 3)

szn\algih Is assumed to be measured accurately enough UNer the assumption that the observations are independent
In the context of three-dimensional maximum Iikelihoodthe overall negative log I)|(kel|hood of a con gurationis

mapping, only a few approaches have been presented so F(x) = 1 r )T i (%) 4)

far [11], [12], [15]. The approach of Bithteret al. [12] de- <> 2C : e

scribes a mobile robot that builds accurate three-dimaasio B S o i )

models. In their approach, loop closing is achieved bj!e€C = f<j i1 >11i<] miim >g is set of pairs of

uniformly distributing the error resulting from odometry indices for which a constraing i, exists.

over the poses in a loop. This technique provides good A Maximum likelihood map learning approach seeks to
estimates but typically requires a small error in the rolii an "d the con guration x of the nodes that maximizes the

pitch estimate. Newmaet al. [11] presented a sophisticatedKelihood of the observations which is equivalent to mini-
approach for detecting loop closures using laser and visiofiZing the negative log likelihood written as

Such an approach can be used to nd the constraints which x =argmin F(x): (5)
are the input to our algorithm. X

Recently, Triebelet al. [15] described an approach that IV. GRADIENT DESCENT
aims to globally correct the poses given the network of FORMAXIMUM LIKELIHOOD MAPPING

constraints in all three dimensions. At each iteration the Gradient descent (GD) is an iterative technique to nd the
problem is linearized and solved using LU decompositionminimum of a function. Olsort al. [13] were the rst who
This yields accurate results for small and medium size Nepplied it in the context of the SLAM problem in the two-
works especially when the error in the rotational componerfimensional space. GD seeks for a solution of Eq. (5) by
is sm_aII. We use thi.s approach as a benchmark for Olteratively selecting a constraint j;i > and by moving a
technique presented in this paper. set of nodes of the network in order to decrease the error

_The contribution of this paper is a highly ef cient tech-jntoduced by the selected constraint. The nodes are update
nique to compute maximum likelihood maps in 3D. Weyccording to the following equation:

present a way of distributing an error in all three rotationa
o 1 = oyt JT (6)
angles that accounts for the non-commutativity of these | ji T

angles. This technique in combination with a variant of N
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Here x is the set of variables describing the locations of .= "-:ulln. r
the poses in the networkl; is the Jacobian ofji, ;i i d 3
is the information matrix capturing the uncertainty of the
observation, and;; is the residual.

Reading the term x of Eq. (6) from right to left gives
an intuition about the iterative procedure used in GD: Fig. 2. A simple example that illustrates the problem of distiing the

. . L. . error in 3D. The left image shows the input data which was akthiby
rji is the re_35|dual which is the opposite Qf the €ITOr VECiyoving a simulated robot over a hexagon twice with small Ganssasse.
tor. Changing the network con guration in the directionThe middle image show the result obtained if the non-commutatafithe
of the residuarji will decrease the errog; . rotation angles is ignored. The right images shows the re$olir approach

. . . .. which is very close to the ground truth.
ji represents the information matrix of a constraint. y 9

Multiplying it with rj; scales the residual components

according to the information encoded in the constrainthe tree to the nodeitself

inT: The role of the Jacobian is to map the residual term

into a set of variations in the parameter space. Xi = P Pparent(i); (7)
is the learning rate which decreases with the iteration

of GD and which makes the system to converge to alfith Xo = po. The operator is the motion decomposition
equilibrium point. operator in 3D which is analogous to the one de ned in

| tice GD d th Il problem int 2D (see Lu and Milios [10]). A detailed discussion on tree
n practice, €composes he overall probiem Into manﬁfarameterizations in combination with GD is out of the scope
smaller problems by optimizing the constraints individyal

. . : f thi ment and we refer the r r .
The difference between GD and stochastic GD is that thoe this docume t.a d we refer the reader to .[6] .
Before presenting our approach for correcting the poses in

stochastic variant selects the constraints in a randomr.orde

. ) . : a network, we want to illustrate the problem of distributing
Obviously, updating the different constraints one aftechea .
; . n error over a sequence of nodes. Consider that we need
other can have opposite effects on a subset of variables. Jo . =
L I . to distribute an erroe over a sequence of nodes. In the
avoid in nitive oscillations, one uses the learning rate tg

reduce the fraction of the residual which is used for upqmintwo—dlmensmnal space, this can be done in a straightfatwar

the variables. This makes the solutions of the different Sulgnanner as follows. Given the residudP = (ry; ry:r ), we

roblems to asymptotically converge towards an equilibriu ~o simply change the pose of théh node in the chain by
P ymp y 9 q i=n timesr2P . This error propagation works well in 2D and

point that is the solution found by the algorithm. This. . . S g
equilibrium point is then reported as the maximum liklihoo s performed in most ma_X|mun_1-I|keI|hood methods in the
solution to the mapping problem. D space. _In the thre_e-d|menS|_onaI space, however, such a
technique is not applicable (with exception of very small
V. 3D GRAPH OPTIMIZATION errors). The reason for that is the non-commutativity of the

three rotations
The graph-based formulation of the SLAM problem does
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not specify how the poses are presented in the nodes of the A

graph. In theory, one can choose an arbitrary parameteriza- R(:: ) 8 R(Lioi0) (®)
tion. Our algorithm uses a tree based parameterization for !

describing the con guration of the nodes in the graph. TeuhereR(; ; ) is the three-dimensional rotation matrix. As

obtain such a tree from an arbitrary graph, one can compuigstrated in Figure 2, applying such an error propagation
a spanning tree. The root of the spanning tree is the nogigads to divergence even for small and simple problems.
at the originpo. Another possibility is to construct a graph Therefore, one has to nd a different way of distributing
based on the trajectory of the robot in case this is availablghe error over a chain of poses which is described in the
In this setting, we build our parameterization tree as D  following.

1) We assign a unique id to each node based on the

timestamps and process the nodes accordingly. A, The Error Introduced by a Constraint
2) The rst node is the root of the tree. _ _
3) As the parent of a node, we choose the node with the Let P; be the homogenous transformation matrix corre-

smallest id for which a constraint to the current nodépondmg to_the posp: of Fhe nodei and X; the transfor-
exists. mation matrix corresponding to the parameter Let P;. o

. . be the ordered list of nodes describing a path in the tree from
This tree can be easily constructed on the .

In the followi q be h hi q the root (here referred to as no6@gto the nodei. We can
n the following, we describe how to use this tree to de ne xpress the pose of a node as

the parameterization of the nodes in the network. Each node v

i in the tree is related to a pogg in the network and P, = Xy 9)

maintains a parametas which is a 6D vector that describes

its con guration. Note that the parameter can be different

from the posep;. In our approach, the parameteris chosen The homogenous transformation mati; consists of a
as the relative movement from the parent of the node rotational matrixR and a translational componentlIt has

k2P i o



the following form indices (compare Eq. (13)). The orientatiorppfis described

Rk tx RI thk by
0 1 0 1 RiR2:::Ry = Rin; (14)
(10)
In order to compute the transformation between twd/N€€N IS : )
nodes andj , one needs to consider the p&h from nodei Dlstnbutmg a given error over a sequence of 3D rotatlons,
to nodej . Since the nodes are arranged in a tree, this paﬁ?n be described in the following way: we need to determine

consists of an ascending part and a descending parP et a set of increments in the intermediate rotations of therchai
be the ascending part of the path starting from nbdmd SO that the orientation of the last node (here node R 1.0 B
P¢ the descending part to nogleWe can then compute the whereB the matrix that rotates; to the desired orientation

errore; in the reference frame qf as based on the error. Formulate_d in a mathematical way, we
need to compute a set of rotatioAg so that

X = with X; =

heren is the length of the patR;; .

g = (P P) i (11) N
Using the matrix notation, the error is RinB = et RicAk: (15)
Eji = i 1PiY1Pj v (12) Once the matriced are known, the new rotational matrices
- i 1 Xkdl X (13) of the parametersy are updated by
kd2p g kazp 2 Ry R «Ax: (16)
where i is the matrix corresponding tg; . We can decompose the mati into a set of incremental

So far, we described the prerequisites for applying GD twmotationsB = Bi.,. In our current implementation, we com-
correct the poses of a network. The goal of the update rufite the individual matriceBy by using the spherical linear
in GD is to iteratively update the con guration of a set ofinterpolation (slerp) [1]. We can decompdeusing the slerp
nodes in order to reduce the error introduced by a constraifitinction with a parameten 2 [0; 1] with slerp(B; 0) = |
In Eq. (6), the term]jiT ji maps the variation of the error andslerp(B; 1) = B. According to this framework, we can
to a variation in the parameter space. This mapping is @mpute the rotatioBy as
linear function. As a result, the error might increase when _ ) T S
applying GD in case of non-linear error surfaces. In thedhre B = [slerp(B;ui 1)]" slerp(B; uu): (17)
dimensional space, the rotational components often lead T0 determine the values 1 and ug, we consider the
highly non-linear error surfaces. Therefore, GD as well asigenvalues of the covariances of the constraints comuecti
similar minimization techniques cannot be applied disectlthe nodek 1 andk. This is an approximation which works
to large mapping problems. well in case of roughly spherical covariances. Note that the

In our approach, we therefore chose a slightly differengigenvalues need to be computed only once in the beginning
update rule. To overcome the problem explained abovend are then stored in the tree.
we allow the usage of non-linear functions to describe Using this decomposition d leads to Eq. (15) in which
the variation. The goal of this function is to compute &B is replaced byBi.,. This equation admits an in nitive
transformation of the nodes along the path in the tree swmber of solutions. However, we are only interested in
that the error introduced by the corresponding constraint solutions which can be combined incrementally. Informally
reduced. In detail, we design this function in a way so that gpeaking, this means when truncating the path froimn 1
computes a new con guration of the variableg 2 P;; so nodes, the solution of the truncated path should be part of
that it corrects only a fraction of the error, where is the the solution of the full path. Formally, we can express this
learning rate. In our experiments, we observed that such @noperty by the following system of equations:
update typically leads to a smooth deformation of the nodes noo. . _
along the path when reducing the error. In our approach, =1 RiALiReAc = RiwBu (18)
this deformation is done in two steps. First, we update th@iven this set of equations, the solution for the matriégs
rotational component®y of the variablesxy and second, can be computed as
we update the translational componetits A = Rl (Bix 1)TRiBur: (19)

B. Update of the Rotational Component This is an exact solution that is always de ned singg,
This section explains how to deform a path in order t&Ry, andBy are rotation matrices. The proof of Eq. (19) is
reduce the error introduced by a constraint. Without losgiven in the Section IX at the end of this document. Based
of generality, we consider the origin of the pgth to be on Eq. (16) and Eq. (19), we have a closed form solution for

in the origin of our reference system. The orientation ofipdating the rotational matrices of the parametersalong

pj (in the reference frame ofy) can be computed by the pathP; from the node to the nodg .

multiplying the rotational matrices along the péa®h . To Note that we also use the slerp function to compute the
increase the readability of the document, we refer to thigaction of the rotational component of the residual that is
rotational matrices along the path & neglecting the introduced by (see Section V-A).



For simplicity of presentation, we showed how to dis-
tribute the rotational error while keeping the nodexed.
In our implementation, however, we x the position of the ..
so-called “top node” in the path which is the node that is "«
closest to the root of the tree (smallest level in the tres). A
a result, the update of a constraint has less side-effects o
other constraints in the network. Fixing the top node irgtea
of nodei can be obtained by simply saving the pose of the
top node before updating the path. After the update, one
transforms all nodes along path in way that the top node . . .

. L . Fig. 3. A simulated trajectory of a robot moving on the surfata oube.
maintains its previous pose. Furthermore, we used the)matpl}he left image shows an uncorrected trajectory and the righge depicts
notation in this paper to formulate the error distributiamce  the corrected one (approx. 4,700 constraints, 100 iters{inls).
it provides a clearer formulation of the problem. In our im-
plementation, however, we use quaternions for repregentin

g 100 = 100

. ) = Sphere c Cub

rotations because they are numerically more stable. Imgheo £ gg g w0 e

. . f=4
however, both formulations are equivalent. An open source 8 S ig
implementation is available [5]. g 2 g 2
0 0
. 0 [0s] 50 [10s] 100 [21s] 0 [0s] 100 [11s] 200 [21s]
C. Update of the Translational Component iteration and execution time iteration and execution time

Compared to the update of the rotational component,
described above, the update of the translational component
can be done in a straightforward manner. In our mapping
system, we distribute the translational error over the sodd? the tree, we therefore do not have to traverse the tree up
along the path without changing the previously computetf the root anymore. It is suf cient to access the parent of
rotational component. the top node in order to compute the poses for all nodes

We distribute the translational error by linearly moving@long & pathP. As a result, updating a constraint requires
the individual nodes along the path by a fraction of thé time proportional tgPj and the overall complexity per
error. This fraction depends in the uncertainty of the indilteration turns intoO(M E(jPj)). HereM is the number
vidual constraints encoded in the corresponding covaeian®f constraints, and=(jPj) is the average path length. In
matrices. Equivalent to the case when updating the rotatior@ll our experiments, we experienced that the average path

component, these fractions is also scaled with the learningndth grows more or less logarithmically with the number
rate. of nodes in the graph. This explains the fast pose updates of

our approach shown in the experimental section.

. 4. The evolution of the error for the sphere and cube Exymat.

VI. COMPUTATIONAL COMPLEXITY

A single iteration of our algorithm requires to distribute VIl. EXPERIMENTS

the error introduced by the individual constraints over & se The experiments are designed to show the properties of
of nodes. Therefore, the complexity is proportional to th@ur technique. We rst present results obtained in simualate
number of constraints times the number of operations needeyperiments and then show results using real robot data.

to distribute the error of a single constraint.

In the remainder of this section, we analyze the numb
of operations needed to distribute the error of a single In order to give the reader an intuition about the accuracy
constraint. Once the poses of the nodes involved in an updatk our approach, we generated two datasets in which the
step are known, the operations described in Section V-Brtual robot moved on the surfaces of easy to visualize
and V-C can be carried out in a time proportional to theggeometric objects. In particular, we used a sphere and a
number of node§P| along the pathiP. Computing the poses cube. The nodes of the network as well as the constraints
of the nodes along a path requires to traverse the tree bptween the nodes were distorted with Gaussian noise. The
to the root according to Eq. (9). A naive implementatiorieftimages of Figure 1 and Figure 3 depict the distortedinpu
requires repeated traversals of the tree up to the root, Thidata whereas the images on the right illustrate the results
however, can be avoided by choosing an intelligent order iobtained by our approach. As the gures indicate, the pose
which to process the constraints. correction nicely recovers the original geometric stroetu

Let the “top node” of a path be the node with the smallest To provide more quantitative results, Figure 4 depicts the
level in the tree. In our current implementation, we sort thevolution of the average error per link versus the iteration
constraints according to level of the corresponding topenodnumber as well as execution time for the sphere and the
This can be done as a preprocessing step. We can procesbe experiment. As can be seen, our approach converges to
the constraints according to this order. The advantageisf tha con guration with small errors in less than 100 iterations
order is that a constraint never modi es a node that has a We also applied the approach of Triebetl al. to both
smaller level in the tree. By storing the pose for each nod#atasets. As mentioned above, this approach linearizes the

& Experiments with Simulated Data



Fig. 5. The real world dataset of the Intel Research Lab deEmbin 2D is used to generate a large 3D dataset. Each of theviftwal buildings consist
of four identical oors. The left image depicts the startingnoguration. The image in the middle depicts an intermediatulteand the right one the
corrected map after 50 iterations of our approach. We pldttetde images constraints between buildings and oors. Foetéeb visibility, we furthermore
plotted the constraints between individual nodes whichoghice a high error and not all constraints. Constraintsptotted in light gray (red) and the
laser data in black. The small image on the right shows a (dedgenap of the two-dimensional laser range data.

Fig. 6. The corrected trajectory plotted on top of an aeriahge of the Fig. 7. The trajectory corrected by our approach is showraokband the

EPFL campus. trajectory of the (D)GPS and IMU-based localization systisnshown in
orange/gray. By considering Figure 6 one can see that thuk loiae covers
the streets accurately.

problem and solves the resulting equation system using LU
decomposition. Due to the comparably high noise in th
simulated experiments, the linearization errors prewetites
approach to nd an appropriate con guration of the nodes. Finally, we applied our method to a real world three-
dimensional dataset. We used a Smart car equipped with 5

SICK laser range nders and various pose estimation sen-
B. Experiments with Partially Real Robot Data sors to record the data. The robot constructs local three-

dimensional maps, so-called multi-level surface maps,[15]

The next experiment is obtained by extending data ol&nd builds a network of constrains where each node repre-

tained from a 2D laser range nder into three dimensionssents such a local map. Constraints between the maps are
We used the 2D real world dataset of the Intel Research Lalbtained by matching the individual local maps.
in Seattle and constructed virtual buildings with multiple We recorded a large-scale dataset at the EPFL campus in
oors. The constraints between buildings and oors arewhich the robot moved on a 10 km long trajectory. Figure 6
manually added but all other data is real robot data. Théepicts an overlay of the corrected trajectory on an aerial
dataset consists of 15.000 nodes and 72.000 constraints. iM@age. As can be seen from the trajectory, several loops
introduced a high error in the initial con guration of the have been closed. Furthermore, it includes multiple levels
poses in all dimensions. This initial con guration is shownsuch as an underground parking garage and a bridge with an
in the left image of Figure 5. As can be seen, no structurgnderpass. The localization system of the car which is based
is recognizable. When we apply our mapping approach, wen (D)GPS and IMU data is used to compute the incremental
get an accurate map of the environment. The image in tfo®nstraints. Additional constraints are obtained by miateh
middle depicts an intermediate result and the right imaglecal maps. This is achieved by rst classifying cells of
show the resulting map after 50 iterations. To compute thihe local maps into different classes and then applying a
result, it took around 3 minutes on a dual core Pentium dariant of the ICP algorithm that considers these classes.
processor with 2.4 GHz. More details on this matching can be found in our previous

((;:. Mapping with a Car-like Robot



c 2l oummemi T |z 2 Curappoash o k=n 1tosubstitute the termRiAs:::Ry 1An 1
£ s 2 151y in the equation fok = n. This leads to
3 ! 3 ! (Rin 1B1n 1)RnAn = Ruin 1RnBin: (22)
3 05 c 05| |
. 0 . By multiplying (R1.n 1B1n 1Rn) ! from the left
0 1000 2000 3000 4000 0 01 02 03 04 hand side, this turns into
time[s] time(s]

- 1 1 1
. . . An - Rn (Bl:n 1) (Rlzn 1) R1:n 1Rn Bl:n
Fig. 8. The evolution of the average error per constrainthef approach
of Triebel et al. [15] and our approach for the dataset recorded with the Since R and By are rotation matrices, the inverse is

autonomous car. The right image shows a magni ed view to the48 ms. always de ned and given by the transposed matrix:
— T T
work [14]. Figure 7 plots the trajectory corrected by our An = Rp(Bun 1) RnBun g.e.d.(23)
approach and the one of the (D)GPS/IMU-based localization ACKNOWLEDGMENT
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